
Eurographics Symposium on Geometry Processing (2006)
Konrad Polthier, Alla Sheffer (Editors)

Selectively refinable subdivision meshes

Enrico Puppo

Department of Computer and Information Sciences
University of Genova

Abstract
We introduceRGB triangulations,an extension of red-green triangulations that can support selective refinement
over subdivision meshes generated through quadrisection of triangles. Our purpose is to define a mechanism
based on local operators that act on subdivision meshes while supporting operations similar to those available
in Continuous Level Of Detail models. Our mechanism permits to take an adaptive mesh at intermediate level of
subdivision and process it through both refinement and coarsening operations, by remaining consistent with an
underlying Loop subdivision scheme. Our method does not require any hierarchical data structure, being based
just on color codes and level numbers assigned to elements of a mesh, which can be encoded in a standard
topological data structure with a small overhead.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Subdivision surfaces are used extensively in computer
graphics and CAD. Subdivision schemes are based on the
recursive refinement of the faces of a geometric mesh and
converge to eitherC1, orC2 surfaces. Classical schemes are
based on subdivision patterns that are applied to all faces of
a mesh at each level. In practice, subdivision is often applied
up to a certain level and the resulting mesh is used as an
approximation of the limit surface [ZS00].

In some applications, it may be desirable to refine a mesh
adaptively. This sort of mechanism is common in Continu-
ous Level Of Detail (CLOD) models developed in the con-
text of free-form mesh modeling and often applied in com-
puter graphics [LRC∗02]. In particular,selective refinement
permits to vary the level of detail (LOD) smoothly across the
mesh and dynamically through time. Transition between dif-
ferent LODs should be as smooth as possible and the result-
ing mesh should always be conforming (i.e., free of cracks).
In order to support selective refinement efficiently, it is cru-
cial that a mesh at intermediate LOD can be modified on-line
in either way, by refining some parts of it while other parts
may be coarsened. To this aim, refinement and coarsening
operations must be based on local operators.

Transition between different levels is not easy in classi-

cal subdivision schemes, since non conforming situations
arise. For instance, the popular Loop [Loo87] and butter-
fly [DLG90] schemes are based on recursive triangle quadri-
section, which gives non-conforming meshes when applied
adaptively at different levels of subdivision. Red-green trian-
gulations [BSW83] have been widely used in the literature to
obtain adaptive and conforming meshes for such subdivision
schemes, but no efficient technique for selective refinement
on such meshes has been designed so far.

In this paper, we present RGB triangulations, an extension
of red-green triangulations that are built from iterative appli-
cation of a local operator, namelyedge split. Our method
has the advantage of being progressive and to generate con-
forming meshes at all intermediate steps, which are consis-
tent with the underlying subdivision scheme. This allows us
to design a selective refinement algorithm for subdivision
meshes based on triangle quadrisection, which exhibits the
same features of the algorithms developed in the context of
CLOD models.

We develop our method in the framework of Loop sub-
division. We show that all levels of subdivision in the Loop
scheme can be obtained and that control points of vertices
are computed correctly in our scheme. This implies that our
RGB meshes converge to the same surfaces obtained with
the classical Loop method.

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

Differently from classical CLOD models, and from some
other models supporting adaptive subdivision, our method
does not require any hierarchical data structure. Selective re-
finement can be performed directly on a RGB mesh, which is
maintained in a standard topological data structure, enriched
with level numbers and color codes for triangles, edges and
vertices, with a small overhead.

RGB triangulations may become a valid substitute or
complement for standard subdivision of triangle meshes in
solid modelers. Concerning applications in computer graph-
ics, recent advances in reverse subdivision [Sab04] suggest
that subdivision surfaces may become a valid alternative to
CLOD models for free-form objects. In this view, RGB tri-
angulations provide the tools to manage subdivision surfaces
with the same flexibility of CLOD models also in this con-
text.

The rest of the paper is organized as follows. In Section
2 we briefly discuss related work. In Section3 we introduce
the necessary background. In Section4 we introduce RGB
triangulations. In Section5 we describe the selective refine-
ment algorithm. In Section6 we describe how to set the po-
sition of vertices according to the Loop subdivision scheme.
In Section7 we describe the data structure used to imple-
ment selective refinement on RGB triangulations. Finally, in
Section8 we make some concluding remarks.

2. Related work

Subdivision surfaces.The literature on subdivision sur-
faces is quite extended. The interest reader can refer to
[WW02] for a textbook, [ZS00] for a tutorial and [Sab04]
for a survey. Here, we will review only those works related
to adaptive subdivision of triangle meshes.

Red-green triangulationswere introduced in the context
of finite element methods [BSW83] as an empirical method
to obtain conforming meshes from adaptive subdivision of
triangle meshes. Red-green triangulations are usually built
through a two-step procedure: first by applying triangle
quadrisection adaptively, and then by subdividing some tri-
angles further, through different patterns, to fix non con-
forming situations. Depending on the underlying subdivision
scheme, the geometry of vertices (control points) that lie on
the transition between different levels of subdivision may be
different form that of the same vertices in a uniformly subdi-
vided mesh. This fact, which is often overlooked, may pre-
vent the correctness of further subdivision or coarsening of
a red-green triangulation, unless the subdivision process is
repeated from scratch.

Red-green triangulations were used in [ZSS97] to sup-
port multiresolution editing of meshes based on the Loop
subdivision scheme. Adaptive meshes are computed by re-
versing subdivision, starting at the finest level and pruning
over-refined triangles. Also in this case, a restricted non-
conforming mesh is computed first, which is fixed next by

further bisection of some triangles. Relocation of vertices is
treated by using a hierarchical data structure that stores the
positions of all control points in the uniform subdivision.

In [SHHG01], the quadrisection scheme is decomposed
into atomic local operations, calledquarks, based on the
popularvertex splitoperation that is at the basis of Progres-
sive Meshes [Hop96]. A red-green triangulation under the
butterfly scheme [DLG90] is obtained through a sequence
of quarks. Problems of topological consistency and reloca-
tion of vertices are treated by forcing some operations during
refinement. The resulting mesh is over-refined with respect
to a corresponding red-green triangulation computed with
a traditional method. No explicit algorithm for selective re-
finement is proposed in [SHHG01].

The
√

3 subdivision [Kob00] and the 4-8 subdivision
[VZ01] schemes are not based on the classical quadrisec-
tion operator. They are naturally adaptive, being both based
on local conforming operators.

The
√

3 subdivision alternates triangle trisection (inser-
tion of a new vertex at the center of each triangle) at one
level, with edge swap at the next level. This scheme gen-
erates triangles that can be regarded as being ofgreenand
blue types in the terminology that we introduce in Section
4. The problem of correct relocation of vertices is addressed
in [Kob00]. To this aim, some over-refinement of neighbors
of even (green) triangles is imposed. A closed form solution
of the subdivision rule permits to compute control points for
a vertex at any level on the basis of just its initial position and
its limit position. Adaptive refinement is supported, while
adaptive coarsening is not investigated explicitly in [Kob00].

The 4-8 subdivision is based on edge split (as in our
case) applied to a special case of triangle meshes, calledtri-
quad meshes. An initial tri-quad mesh can be obtained from
any triangle mesh by doubling its number of triangles and
changing its topology [VZ01]. The correct position of con-
trol points is addressed and resolved also in this case with
a certain amount of over-refinement of the mesh. Only ba-
sic operations are investigated in [VZ01], while no selective
refinement algorithm is proposed.

CLOD models. Also the literature on Continuous Level of
Detail models is very wide. The interested reader may re-
fer to [LRC∗02] for a recent book on this subject. Generally
speaking, a CLOD model consists of a base mesh at coarse
resolution, plus a set of local modifications that can be ap-
plied to the base mesh to refine it. Such modifications are
arranged in a hierarchical structure, which consists of a di-
rected acyclic graph (DAG) in the most general case. Meshes
at intermediate level of detail correspond to cuts in the DAG,
and algorithms for selective refinement work by moving a
front through the DAG and doing/undoing modifications that
are traversed by this front. This general framework, devel-
oped in [Pup98], applies to almost all CLOD models pro-
posed in the literature.

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

Figure 1: The triangle quadrisection pattern.

CLOD models can provide meshes at intermediate LOD,
where detail can vary across the mesh and through time, at
a virtually continuous scale and with fast procedures that
work on-line even for huge meshes. The scheme proposed
in [DWS∗97] is very popular and most authors refer to it
in order to implement their selective refinement algorithms.
The outer structure of the algorithm we propose for RGB
triangulations is also based on this scheme.

There exist a few CLOD models based on recursive subdi-
vision patterns. The model proposed in [DWS∗97] is based
on the recursive bisection of right triangles. This rule is also
used by several other authors, and may be regarded as a sub-
division. It can be applied just to meshes obtained from regu-
lar grids (typically representing terrains), while it is not easy
to extend it to more general triangle meshes. One general-
ization is given by 4-k meshes [VG00], which have in fact a
strong relation with 4-8 subdivision [VZ01].

3. Background

Triangle meshes.A triangle meshis a tripleΣ = (V,E,T)
where:V is a set of points in 3D space, calledvertices; T
is a set of triangles having their vertices inV and such that
any two triangles ofT either are disjoint, or share exactly
either one vertex or one edge (thus, the mesh is inherently
conforming); E is the set of edges of the triangles inT, where
each edge is taken just once. Standard topological incidence
and adjacency relations are defined over the entities ofΣ.

We will assume to deal always withmanifold meshes
without boundary, i.e.: each edge ofE is incident at exactly
two triangles ofT; and thestar of a vertex (i.e., the set of
entities incident at it) is homeomorphic to an open disc.

A triangle mesh is said to beregular if all its vertices have
valence six. In a mesh that is not regular, vertices with a
valence different from six are calledextraordinary.

A non-conforming meshis a structure similar to a mesh,
in which triangles may violate the rule of edge sharing: there
may exist adjacent trianglest andt′ such that one entire edge
of t overlaps just a portion of the corresponding edge oft′.

Loop subdivision. The Loop subdivision scheme was in-
troduced in [Loo87] and it is the first and most famous sub-

v2

v0
v
1

v3

1
8

1
8

3
8

3
8

k

w(k)

k

w(k)

k

w(k)

k

w(k)

k

w(k)

1−w(k)

Figure 2: The Loop subdivision scheme: the stencil used to
compute the position of odd vertices (left); the stencil used
to compute the position of even vertices (right). Numbers are
weights assigned to vertices in the linear combination, k is
the valence of the even vertex (k= 6 in the regular case) and

w(k) = 5
8−

(
3
8 + 1

4 cos
[

2π
k

])2
.

division scheme on triangle meshes. It is an approximat-
ing scheme, meaning that the position of control points is
changed throughout levels of subdivision, and it converges
to aC2 surface if applied to a regular mesh.

The subdivision pattern istriangle quadrisection,as de-
picted in Figure1, and it is applied to all triangles of the
mesh at each level of subdivision. The position of each new
vertex introduced from subdivision (called anodd vertex)
is computed as weighted sum of vertices from the previous
level (called theeven vertices), as depicted in the stencil on
the left of Figure2. After inserting odd vertices at a given
level, all even vertices are relocated according to the stencil
on the right of Figure2. For the sake of brevity we omit here
and in the following the scheme for boundary vertices. Our
method can be extended easily to treat meshes with bound-
ary too.

Therefore, for a vertexv introduced at level l ,
there exist an infinite sequence of control points
pl (v), pl+1(v), . . . , p∞(v) that define the positions ofv
at levell and all successive levels,p∞(v) being its position
on the limit surface.

For a vertexv of the base mesh positionp0(v) is defined;
while for a vertexv introduced at levell position pl (v) de-
pends on positionspl−1 of vertices in its mask. The succes-
sive positions in the sequence are computed according to the
mask for even vertices, such that for an even vertexv, p j (v)
depends onp j−1(v) as well as on the positionsp j of all its
neighbors (which are all odd vertices at levelj).

Red-green triangulation. Consider a base mesh and as-
sume the quadrisection scheme is applied adaptively to it.
The resulting structure is a non-conforming mesh, as de-
picted in Figure3a. This mesh is said to berestrictedif two

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

(a) (b) (c) (d)

Figure 3: Red-green triangulation: a non-conforming restricted mesh obtained from adaptive quadrisection (a); bisection is
used to fix triangles that have one neighbor at the next level (b); trisection is used to fix triangles that have two neighbors at the
next level (c). Triangles that have three neighbors at the next level are subdivided further by quadrisection (d).

adjacent triangles may differ for no more than one level of
subdivision. If a mesh is restricted, it may be made conform-
ing by subdividing some triangles further, by either bisec-
tion, trisection, or quadrisection, as depicted in Figures3b
and c. Some authors avoid trisection by forcing further sub-
division of triangles in the situation of Figure3c. This fact,
however, may propagate subdivision to adjacent triangles,
possibly affecting a large area that will result over-refined.

In case both bisection and trisection are used, a given tri-
angle may be subdivided by ten different patterns: three ob-
tained by rotational simmetry from the pattern depicted in
Figure3b; six obtained by rotational simmetry and mirror-
ing from the pattern depicted in Figure3c; and one corre-
sponding to the pattern depicted in Figure3d. Note that, by
construction, a trianglet that is subdivided with one of the
first nine patterns must necessarily have neighbor(s), at all
edges oft that are split, which were subdivided at the next
level of subdivision by the thenth pattern.

All triangles that would appear in a standard subdivision
are said to be green, while the other triangles that are in-
troduced to make the mesh conforming are said to be red.
In the following, we will introduce finer color codes for
triangles and edges, in order to develop the details of our
method. Green triangles and red triangles generated through
bisection, as well as the red triangle generated through tri-
section, which is depicted as a square triangle in Figure3c,
will maintain the same color codes (green and red, respec-
tively). On the contrary, in our framework, the triangle that
is depicted as a skinny isosceles triangle in Figure3c will be
said to be blue. Note that, in both cases, the small equilateral
triangle in Figure3c, as well as all triangles in Figure3d are
green triangles at the next level of subdivision.

4. RGB triangulations

RGB triangulations are defined as all those triangulations
that can be built through iterative application of given oper-
ators for local subdivision, starting at a base meshΣ0. Such
operators always produce conforming meshes and can gen-
erate all and only those triangles that may appear in a red-
green triangulation built fromΣ0, but the possible combina-

tions of such triangles to form a mesh are more numerous
that in red-green triangulations. In other words, RGB trian-
gulations form a superset of red-green triangulations, with a
higher expressive power. Reverse local operators to coarsen
a mesh are also defined that, in combination with the subdi-
vision operators, allows us to support selective refinement.

4.1. Local subdivision operators

Consider a base meshΣ0. We assign level zero to all vertices,
edges and triangles ofΣ0, and color green to all edges and
triangles ofΣ0. In the following, we define local subdivision
operators that, when applied iteratively toΣ0, will generate
a conforming mesh where triangles will be colored of green,
red and blue; edges will be colored of green and red; and
vertices, edges, and triangles will have different levels. Color
codes of red-green triangulations are extended here with fur-
ther codes (blue triangles and colors for edges) in order to
control the application of subdivision operators on a local
basis.

For the sake of clarity, in our examples we will use regu-
lar meshes where all green triangles are equilateral, red tri-
angles are square with one angle of sixty degrees and the
other angle of thirty degrees, and blue triangles are isosce-
les with two angles of thirty degrees. However, our method
is not restricted to such constraints, since color codes propa-
gate according to recursive rules that do not depend on either
geometry or valence of vertices.

We first define a sub-atomic rule, namely triangle bisec-
tion, which can be applied under certain conditions, and pro-
duces a certain configuration depending on the color of the
triangle to be bisected. Next we define a first atomic rule,
namely edge split, as the combination of triangle bisections
applied to a pair of adjacent triangles. Finally we add a sec-
ond atomic rule, namely edge swap, to be applied automati-
cally only in a specific situation.

Triangle bisectioncan be applied only in the following
configurations (see Figure4):

• G-bisection: let t be a green triangle at levell ande be
an edge oft (ecan be any edge oft and it is always green

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

l+1 l+1l

l l
l l

l
l

ll l

l l ll

l+1 l+1
l+1

l+1

l+1

G-bisection R-bisection

Figure 4: Triangle bisection: bisection of a green triangle
(G-bisection); bisection of a red triangle (R-bisection). La-
bels denote the level of edges and triangles.

and at levell ; vertices oft can be at any level≤ l ). The
bisection oft at the midpoint ofe generates two red tri-
angles at levell . Each such triangle will have: one green
edge at levell (the one common with old trianglet), one
green edge at levell +1 (one half ofe) and one red edge
at levell (the new edge inserted to splitt). The new vertex
inserted to perform bisection will have levell +1.
• R-bisection: let t′ be a red triangle at levell ande′ its

green edge at levell (there is only one such edge). The
bisection oft′ at the midpoint ofe′ generates one blue
triangle at levell and one green triangle at levell +1. The
green triangle is incident at the green edge at levell + 1
of old trianglet′ and also its other two edges are at level
l +1 (the edge inserted to subdividet′, and one half ofe′).
The blue triangle is incident at the red edge of old triangle
t′ and has also two green edges at levell + 1 (the edge
inserted to subdividet′, and the other half ofe′). The new
vertex inserted to perform bisection will have levell +1.

Edge splitconsists of the simultaneous bisection of two
adjacent trianglest0 andt1 by splitting their common edge
e, and can occur only if the bisections of botht0 andt1 along
e are legal according to the rule defined above. It is readily
seen that edge split is legal only in the following three cases
(see Figure5):

• GG-split: t0 andt1 are both green and at the same level;
• RG-split: t0 is green andt1 is red and they are both at the

same level;
• RR-split: t0 andt1 are both red at levell ande is a green

edge at levell . This case may come in two variants (RR1-
split and RR2-split). Each variant can be recognized by
the cycle of colors of edges on the boundary of the dia-
mond formed byt0 andt1: this may be either red-green-
red-green for RR1-split, or red-red-green-green for RR2-
split.

BB-swap is applied automatically whenever two blue tri-
angles at levell become adjacent along their red edge at level
l (see Figure6). In this case, such edge is eliminated and the
other diagonal of the quadrilateral formed by such two trian-
gles is inserted. The result is a pair of green triangles at level
l + 1 (all their edges are also green and at levell + 1). See
Figure6. In practice, BB-swap will occur immediately after
triangle bisection is applied to a red triangle that is already

GG-split RG-split

l <l

l<l

ll−1

RR1-split RR2-split

Figure 5: Edge split: two green triangles (GG-split); one red
and one green triangle (RG-split); two red triangles (RR1-
and RR2-split). Labels denote the level of vertices and edges.

Figure 6: BB-swap: when a red triangle is bisected, which
was already adjacent to a blue triangle, two blue triangles
become adjacent along a red edge. Such edge is swapped,
thus producing two green triangles at the next level.

adjacent to a blue triangle along its red edge. Note that, by
construction, one of the two new green triangles will have
all three vertices at levell +1.

Edge split is the main operator used to perform mesh re-
finement. It can be applied to legal pairs of adjacent trian-
gles, selected according to rules that drive refinement, while
swap is forced whenever two blue triangles become adjacent
along a red edge. Note that just green edges can be split,
while red edges are only swapped.

4.2. Consistency of RGB triangulations

The family of RGB triangulations from base meshΣ0 con-
tainsΣ0 as well as all other meshes can be generated start-
ing atΣ0 and applying the refinement rules above. We claim
that RGB triangulations form a superset of red-green trian-
gulations generated starting atΣ0 (hence, also of all uniform
subdivisions ofΣ0).

We first prove that any red-green triangulation can be built
starting atΣ0 through the local operators defined before.
Proof is by induction on the maximum level of subdivisionm
of a red-green triangulationΣ that subdividesΣ0. By defini-
tion, if m= 0 thenΣ≡ Σ0 and it is obviously a RGB triangu-

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

lation. Let us suppose now that our claim is true up to level
of subdivisionm−1. LetΣ′ be the mesh obtained fromΣ as
follows: all green triangles at levelm and all red triangles at
level m−1 (i.e., red triangles that subdivide green triangles
at levelm−1 to make the mesh conforming with triangles at
level m) are removed, and the holes left are naturally filled
with green triangles at levelm− 1. It is readily seen that
Σ′ is conforming and its maximum level of subdivision is
m−1. Therefore,Σ′ can be built through our local operators
by inductive hypotesis. Now, in order to obtain backΣ, we
must refine all those triangles at levelm−1 that were used
to fill the holes, each in its proper configuration. Let us call
S= Sr ∪Sg this set of triangles, whereSr [Sg] is the subset
of Sof triangles that will refine into red [green] triangles in
Σ. Note thatSr is void if Σ is a uniform subdivision. Consis-
tently with color codes of red-green triangulations, they are
all green and at levelm− 1. We also assign green color to
their edges, consistently with our color codes. All remaining
triangles ofΣ′ already belong toΣ.

We refine first all triangles ofSr . Let t ∈ Sr , thent must
split according to either bisection or trisection (see Figure3b
and c). Note that, sincet is the first triangle that we subdi-
vide, all its neighbors are green at levelm−1, and they will
eventually be refined into green triangles at levelm (by con-
struction rules of red-green triangulations). We may obtain
bisection oft by applying GG-split; and trisection oft by
applying GG-split followed by RG-split. Note that after this
refinement, each triangle adjacent tot along a splitting edge
is now subdivided into a pair of red triangles. Lett′ ∈ Sr

be another triangle we take for subdivision, and let us con-
sider its neighbors along edges that must be subdivided. If
such triangles are green, thent′ can be subdivided in the
same manner ast. Otherwise,t′ might have some red neigh-
bors that have been obtained by subdividing triangles ofSg

because of edge splits applied to subdivide some other tri-
angle ofSr processeded beforet′. By exhaustive analysis of
the possible configurations, it is easy to see that bisection
of t′ can be obtained by applying either a GG-split or a RG-
split, depending on whether the neighbor is green or red; and
trisection oft′ is obtained by the same operation, followed
by either a GR-split or RR2-split, depending on whether the
neighbor is green or red. All remaining triangles ofSr can be
subdivided ast′.

At this point, we have obtained the correct refinement of
all triangles ofSr and partial refinement of all those triangles
of Sg that were adjacent to triangles ofSr . Let us consider
now t ∈ Sg and see how it has been refined so far. There are
four possibilities:

• All three edges oft have been split. In this case, the tri-
angles that subdividet are now in the configuration de-
picted in the center of Figure6. A BB-swap is sufficient
to complete subdivision oft to levelm, without affecting
its neighbors;
• Two edges oft have been split. In this case, the triangles

that subdividet are now in the configuration depicted on
the left of Figure6. Note that the neighbort′ of t on its
right side (referring to the figure) must necessarily be-
long to Sg or be a red triangle subdividing a triangle in
Sg. Therefore, we first apply either a RG-split or a RR*-
split (where * may be 1 or 2 depending on configuration)
depending ont′ being either green or red. Next we apply
edge swap as in the previous case.
• One edge oft has been split. In this case,t has been bi-

sected into two red triangles as in the case of G-bisection.
This case is similar to the previous, but the first split must
be performed on both sides oft (i.e., on both red triangles
refining it).
• No edge oft has been split yet. In this case, all three neigh-

bors oft must either belong toSg or subdivide triangles of
Sg. We first apply either a GG-split or a RG-split, depend-
ing on whether the neighbor oft along the splitting edge
is green or red. Then we proceed as in the previous case.

By exhaustive analysis of possible configurations, it is easy
to see that the neighbors oft affected by the split operations
we perform will get to one of the first three configurations.
Therefore, the repeated application of these operations will
eventually refine all triangles ofSg to levelm. At that point,
we have obtained meshΣ.

In order to complete the proof of our claim, we must show
that there exist RGB triangulations that are not red-green tri-
angulations. One example is the mesh obtained from a pair
of adjacent green triangles by applying a GG-split. The mesh
depicted in Figure9 is a more elaborated example. It is in-
teresting to notice how RGB triangulation may manage fast
transitions of LOD better than red-green triangulations. Con-
sider the RGB triangulation on the left of Figure8. The LOD
transition from the base to the apex of the big triangle may
be carried out to an arbitrary number of levels by using the
same pattern. The equivalent transition using red-green tri-
angulations is depicted on the right side of the same figure
and requires about twice the number of triangles.

4.3. Reverse subdivision operators

Since a selective refinement algorithm also needs to reverse
subdivision (i.e., to coarsen a mesh), we define also local
operators that invert edge split and edge swap.

Triangle mergeis the reverse operation of triangle bisec-
tion and it is defined as follows:

• RR-merge: a pair of red trianglest0, t1 of level l that are
adjacent at a red edge may merge into one green triangle
at levell ; the two green edges at levell +1 of t0 andt1 are
merged to form a new edgeeat levell of the new triangle;
the red edge and its endpoint at levell +1 disappear.
• GB-merge: A pair of adjacent trianglest0, t1 such thatt0

is green at levell + 1 andt1 is blue at levell may merge
into one red triangle at levell ; the common edge oft0 and
t1 and the endpointv of such edge that is incident at both

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

green edges oft1 disappear; the other two green edges that
were incident atv are merged to form one green edge at
level l .

Edge mergeis the reverse operation of edge split and can
be applied to triangles incident at vertices of valence four,
such that triangle merge can be applied to pairs of such tri-
angles. The same cases depicted in Figure5 occur (modifi-
cations apply right-to-left in this case):

• R4-mergeinverts GGsplit;
• R2GB-mergeinvertes GR-split;
• GBGB-merge inverts RR1-split;
• G2B2-mergeinverts RR2-split.

A little care must be taken in applying GBGB-merge in or-
der to avoid inconsistencies. Referring to Figure5, note that
the quadrilateral must have two vertices at the same levell
and two other vertices at a level lower thanl . GBGB-merge
must be performed in such a way that the diagonal incident
at vertices of level lower thanl is maintained.

Reverse edge swap cannot be applied to any pair of adja-
cent green triangles, otherwise the structure of subdivision
would be destroyed.GG-swap,which inverts BB-swap, can
be applied to a pair of adjacent green trianglest0 andt1 at
level l if one of them, sayt0, has all three vertices at level
l > 0. This condition is necessary and sufficient to guarantee
that t0 andt1 have the same parent trianglet in the subdivi-
sion andt0 is the central triangle obtained by subdividingt.
In order to be consistent with refinement rules, reverse edge
swap should be applied only if one of the blue triangles gen-
erated is removed immediately after through an edge merge
operation. We therefore constrain reverse edge swap to oc-
cur only in the configurations depicted in Figure7. These
configurations are easy to verify by exploring the stars of
vertices common tot0 and t1, and checking the colors and
levels of their incident triangles.

With these local operators at hand, we can modify any
RGB triangulation by either refining or coarsening it locally.
This means that we can traverse the whole family of RGB
triangulations originated from a given base mesh, reaching
any adaptively subdivided mesh that may be needed from an
application. This task will be performed through the selec-
tive refinement algorithm described in the following section.

5. Selective refinement

Selective refinement is applied to a RGB triangulationΣ and
consists of the iterated application of local operators defined
in the previous until some user-defined halt condition is ver-
ified.

Following [CDM∗04, DWS∗97], selective refinement is
driven by two priority queues:

• A queueQr of refinement operations to be performed to

Figure 7: Legal configurations for applying GG-swap.

meet LOD requirements. Refinement operations are re-
lated to edges to split. QueueQr is initialized by con-
sidering all green edges ofΣ and inserting intoQr all
and only those edges that need refinement. Depending on
user needs, priority of an edge may depend, e.g., from its
length, or from distance between its midpoint and the po-
sition of the vertex to split it at next level of subdivision.
• A queueQc of coarsening operations to be performed

whenever possible to reduce the size of the mesh with-
out violating LOD requirements. Coarsening operations
are related to vertices to be removed through edge merge
operations. QueueQc is initialized by considering all ver-
tices ofΣ that may be removed from an edge merge oper-
ation, possibly preceded from suitable edge swap opera-
tion(s), and inserting them intoQc. Priority of a vertex in
the queue will be set consistently with the previous case.

After initialization, elements are popped from eitherQr

or Qc, according to higher priority, and related operations
are applied to modifyΣ, until a halt condition is verified.
This may typically depend either on the full satisfaction of
LOD requirements, or on the size of the extracted mesh.
See [CDM∗04] for more details about managing the queues
during selective refinement.

The most crucial aspects of the algorithm are related to
refinement and coarsening operations to be performed on a
RGB triangulation.

Coarsening. Assume a vertexv having level l has been
popped fromQc. If the star ofv in Σ has one of the configu-
rations depicted in Figure7, then the corresponding reverse
swap is applied first. At this point, the star ofv will have one
of the four configurations depicted in Figure5 (right side).
The following operations are performed:

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

1. Edge merge is applied andΣ is updated accordingly;
2. The four vertices that were adjacent tov are analyzed and

those vertices that can be now legally removed are in-
serted intoQc; the control point of each vertex is updated
(see next section).

Refinement. Refinement is more complex, since edges in
Qr may require further refinement operations on other edges
prior to be refined. Assume a green edgeehaving levell has
been popped fromQr . If the pair of triangles incident ate
do not form one of the configurations depicted in Figure5
(left side) then such triangles are analyzed to trigger recur-
sive edge split operations. Lett be one such triangle:

• if t is a red triangle at levell − 1 then its green edge at
level l −1 is recursively split;
• if t is a blue triangle at levell −1 thent must be adjacent

to a red trianglet′ at level l − 1 along its red edge; the
green edge oft′ at levell −1 is split recursively;
• otherwise no action is required.

Performing a single edge split involves the following op-
erations:

1. Compute the control point at levell +1 for the new vertex
v (see next section);

2. Update the control point at levell +1 at the four vertices
of triangles to be split;

3. Update meshΣ performing edge split;
4. Test each new green edge generated from split and add it

to Qr if it does not fulfill LOD requirements.

As we will see in the next section, computation of the
control point for the new vertex may require some ex-
tra refinement of the mesh, necessary to obtain the correct
values for the Loop stencil of odd vertices. This is simi-
lar to what happens in other adaptive subdivision schemes
[Kob00, SHHG01, VZ01]. Since we wish to avoid over-
refinement of the result, edge splits performed during com-
putation of control points are tested for LOD requirements.
In case one such split is not necessary according to LOD re-
quirements, the new vertex generated from split is marked
as temporary and inserted in a queue. A temporary vertex
becomes permanent in case one of its incident edges under-
goes a standard edge split. At the end of selective refinement,
this queue is scanned, and all vertices that are still temporary
are removed by performing corresponding edge merge oper-
ations.

6. Geometry of control points

So far we have been concerned only with topological
changes in a RGB triangulation. We now study the geometry
of vertices. As we work in the framework of Loop subdivi-
sions, control points of all vertices are computed at all levels
through the proper stencils. However, since RGB triangula-
tions work selectively, it may be not trivial to determine the

right vertices to use for a stencil, and their proper control
points.

Updates to control points must be done for odd vertices
during refinement, and for even vertices both during refine-
ment and during coarsening. We address the three relevant
cases in the following.

Control point for an even vertex updated after refine-
ment. When an edgeeat levell is split by introducing a new
(odd) vertexv, its control pointpl+1(v) is computed (see
next paragraph) and the control pointspl+1 of end vertices
v0 andv1 of e need to be updated with a contribution from
pl+1(v). Without loss of generality, let us consider the case
of v0. We adopt a lazy strategy, which generatespl+1(v0)
with a partial value as soon as the first neighbor ofv0 at
level l +1 is introduced, and mark it asrestricted. Then the
value ofpl+1(v0) is updated every time another neighbor of
v0 at levell +1 is introduced, by adding its contribution ac-
cording to the formula used for even vertices in the Loop
scheme. After the last neighbor has been introduced, con-
trol point pl+1(v0) gets its correct value by combining the
current summation with valuepi(v0) (that must be already
available, by recursion) and is markedavailable.

Control point for an odd vertex introduced via refine-
ment. Let vertexv be introduced at levell +1 of subdivision
by splitting an edgee at levell . In order to compute control
point pl+1(v), we need to fetch the four vertices in the stencil
of v at levell , and their control pointspl (see Figure2).

In a RGB triangulationΣ, verticesv0 andv1 of the stencil
of v are the endpoints of edgee to split, so they are found
immediately. On the contrary,v2 andv3 are not necessarily
vertices of the triangles incident ate. In fact, such triangles
might have been refined already to higher levels of subdivi-
sion. Without loss of generality, let us consider just the case
of vertexv2. Let t be the triangle incident ate on the side of
vertexv2 and let us refer to Figure8 (left side). If t is green,
then vertexv2 is its vertex opposite toe. Otherwise,t must
be red and its neighbort′ on the other side of its red edge
e′ must be either red or blue. Ift′ is red, then vertexv2 is
the vertex oft′ opposite tot, otherwise the neighbort′′ of
t′ on the side of 2 is retrieved (this can be decided by look-
ing whether the red edge is incident atv0 or at v1). If t′′ is
green, then vertexv2 is its vertex opposed tot′, otherwise we
sett ← t′′ and restart the search. This search can be imple-
mented through a simple while cycle and may takeO(m− l)
time, wherem is the maximum level of subdivision, in the
worst case (that can occur only in the proximity of an abrupt
change of LOD). IfΣ were refined uniformly, we will have
m∈O(logN), whereN is the number of vertices ofΣ. In the-
ory, we may havem∈ O(N) in the worst case (e.g., if high
level of subdivision is used only in the proximity of a given
point and degrades abruptly to level zero in the other parts
of the mesh). In practice, since a subdivision mesh is usu-
ally built on a small number of levels, and abrupt changes of

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

v0 v1

v2

e

Figure 8: Left side: finding vertex v2. The triangle incident
at e at level l might have been split through all successive
levels of subdivision. Right side: in order to achieve the same
transition of LOD from base to apex of the big triangle, al-
most twice the number of triangles is necessary in red-green
triangulations.

Figure 9: In order to bisect the edge in bold, vertices marked
by bullets must be computed by recursive edge split.

LOD seldom occur, we may consider this procedure to run
in constant time.

Once a vertexvi , i = 0,1,2,3 is fetched, we check whether
its control pointpl (vi) is available or not. If not, we need to
compute it recursively by splitting edges in the star ofvi ,
through the procedure already described in Section5. All
green edges incident atvi are considered. For each such edge
ej , if it is at levell ′ < l , we split it to generate a new vertexv′j
and its control pointpl ′(v′j ). Split is repeated until the edge
reaches levell . Note that a regular vertex may have green
incident edges that differ for at most three levels, thus the
number of new vertices to be computed during this operation
is usually quite small (see Figure9).

Control point for an even vertex updated after coarsen-
ing. When a vertexv at levell +1 is removed from an edge
merge operation, the four vertices that were adjacent tov are
checked and, for each such vertexvi , if its current position
in the mesh is at a control point of level higher thanl , then it
is changed topl (vi). However, the control pointpl (vi) in the
list of control points ofvi is not changed and it is maintained
availablefor subsequent processing.

7. Data structure

A RGB triangulation can be maintained in a standard topo-
logical data structure for triangle meshes. One possibility is
using two dynamic arrays, one for vertices and the other for
triangles, with a garbage collection mechanism to manage
reuse of locations freed because of coarsening operations.
For each triangle, links to its three vertices as well as to its
three neighbors are maintained. For each vertex, just a link
to one of its incident triangles is maintained (this is sufficient
to compute the star of a vertex in optimal time).

This data structure is extended as follows. For each vertex
v we store: its level, a link to a linked list of its control points,
and a link to the control point in the list corresponding to the
position ofv in the current mesh. Each control point in a list
contains its three coordinates, and a flag to indicate whether
it is available or restricted. This flag is actually a counter
that is initialized either at six, or at the valence of the vertex
if it is an extraordinary vertex, and is decremented each time
a contribution to computation of the control point is added.
Value zero means that the control point is available.

For each triangle we store its color and its level. We use
two different codes for red triangles, depending whether the
short (higher level) green edge is followed by the other green
edge, or it is followed by the red edge when traversing the
triangle counterclockwise. Since two bits are sufficient for
the color, and levels in subdivision are usually not many, one
byte is sufficient to store both color and level. Edges are ad-
dressed as pairs triangle-index, where index can take values
0, 1, 2. Depending on the color of a triangle we store edges
in entries 0, 1, 2 in a conventional order (e.g., for a blue trian-
gle 0=red 1=green 2=green). Because we used two different
codes for red triangles, this is sufficient to unambiguously
determine color and level of each edge.

Since selective refinement is meant to be used dynami-
cally, we set up a caching mechanism to save vertices and
their related control points when they are removed from the
mesh because of edge merge operations. A caching policy
based on least recently used vertex is adopted to manage
the cache. Vertices in cache can be restored together with
all their control points once they are reinserted in the mesh
because of an edge split operation.

8. Concluding remarks

We have introduced RGB triangulations, a mechanism for
the subdivision of triangle meshes that can support fully dy-
namic selective refinement and is compatible with classical
subdivision schemes based on the recursive quadrisection of
triangles.

We have developed our selective refinement algorithm for
the Loop subdivision scheme. However, an analogous algo-
rithm can be developed similarly for the (modified) butterfly
subdivision [DLG90,ZSS96]. In that case, subdivision is in-
terpolating, thus each vertex has a fixed position and the data

c© The Eurographics Association 2006.



E. Puppo / Selectively refinable subdivision meshes

structure becomes simpler. Even vertices do not need any up-
date, while the stencil for odd vertices is larger than in Loop
subdivision, and needs a slightly more complex procedure to
compute vertex position. In the case of Loop subdivision, it
should be also possible to develop a closed form solution for
the control points of even vertices, similar to that proposed
in [Kob00], which would also allow us to use a simpler data
structure. We plan to investigate these issues in our future
work.

RGB triangulations are currently under implementation.
We expect that our method will outperform red-green trian-
gulations in terms of over-refinement, by maintaining a com-
parable visual quality. We also plan to compare the perfor-
mance of RGB triangulations with respect to

√
3-subdivision

and 4-8-subdivision, in terms of speed, storage space, visual
quality and over-refinement.

Acknowledgments

This work has been partially supported by the European
Network of Excellence AIM@SHAPE under contract num-
ber 506766, and by Project FIRB-MIUR SHALOM (SHApe
modeLing and reasOning: new Methods and tools) funded
by the Italian Ministry of Education, University and Re-
search under contract number RBIN04HWR8.

References

[BSW83] BANK R., SHERMAN A., WEISER A.: Refine-
ment algorithms and data structures for regular local mesh
refinement. InScientific Computing, Stepleman R., (Ed.).
IMACS/North Holland, 1983, pp. 3–17.1, 2

[CDM∗04] CIGNONI P., DE FLORIANI L., MAGILLO

P., PUPPO E., SCOPIGNO R.: Selective refinement
queries for volume visualization of unstructured tetrahe-
dral meshes. IEEE Transactions on Visualization and
Computer Graphics 10, 1 (January/February 2004), 141–
159. 7

[DLG90] DYN N., LEVIN D., GREGORY J.: A butterfly
subdivision scheme for surface interpolation with tension
control.ACM Transactions on Graphics 9, 2 (April 1990),
160–169. 1, 2, 9

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI

D., MILLER M., ALDRICH C., MINEEV-WEINSTEIN

M.: ROAMing terrain: Real-time optimally adapting
meshes. InProceedings IEEE Visualization ’97(Oct.
1997), IEEE, pp. 81–88.3, 7

[Hop96] HOPPEH.: Progressive meshes. InSIGGRAPH
96 Conference Proceedings(Aug. 1996), Annual Confer-
ence Series, ACM SIGGRAPH, Addison Wesley, pp. 99–
108. 2

[Kob00] KOBBELT L.:
√

3 subdivision. InProceedings
ACM SIGGRAPH 2000(2000), pp. 103–112.2, 8, 10

[Loo87] LOOP C.: Smooth subdivision surfaces based
on triangles. Master thesis, University of Utah, Dept. of
Mathematics, 1987.1, 3

[LRC∗02] LÜBKE D., REDDY M., COHEN J., VARSH-
NEY A., WATSON B., HÜBNER R.: Level Of Detail for
3D Graphics. Morgan Kaufmann, 2002.1, 2

[Pup98] PUPPO E.: Variable resolution triangulations.
Computational Geometry 11, 3-4 (1998), 219–238.2

[Sab04] SABIN M.: Recent progress in subdivision: a
survey. InAdvances in Multiresolution for Geometric
Modelling, Dogdson N., Floater M., Sabin M., (Eds.).
Springer-Verlag, 2004, pp. 203–230.2

[SHHG01] SEEGER S., HORMANN K., HÄUSLER G.,
GREINER G.: A sub-atomic subdivision approach. In
Proceedings of Vision, Modeling and Visualization 2001
(Berlin, 2001), Girod B., Niemann H., Seidel H.-P.,
(Eds.), Akademische Verlag, pp. 77–85.2, 8

[VG00] VELHO L., GOMES J.: Variable resolution 4-k
meshes: Concepts and applications.Computer Graphics
Forum 19, 4 (2000), 195–214.3

[VZ01] VELHO L., ZORIN D.: 4-8 subdivision.
Computer-Aided Geometric Design 18(2001), 397–427.
2, 3, 8

[WW02] WARREN J., WEIMER H.: Subdivision Methods
for Geometric Design. Morgan Kaufmann, 2002.2

[ZS00] ZORIN D., SCHRÖDERP. (Eds.):Subdivision for
Modeling and Animation (SIGGRAPH 2000 Tutorial N.23
- Course notes). ACM Press, 2000.1, 2

[ZSS96] ZORIN D., SCHRÖDER P., SWELDENS W.: In-
terpolating subdivision for meshes with arbitrary topol-
ogy. In Comp. Graph. Proc., Annual Conf. Series (SIG-
GRAPH 96)(1996), ACM Press, pp. 189–192.9

[ZSS97] ZORIN D., SCHRÖDER P., SWELDENS W.: In-
teractive multiresolution mesh editing. InComp. Graph.
Proc., Annual Conf. Series (SIGGRAPH 97), ACM Press
(1997). 259-268.2

c© The Eurographics Association 2006.


