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1 Introduction

This paper introduces an initial account of a formal methodology for specification-based black-box

verification testing of software artefacts against their specifications, as well as for validation testing of

specifications against the so-called application concept [14].

When testing software process artefacts we have three actors. The first is a posit we make on the

real world, whether it be a software artefact reified from a specification or a software artefact to be,

i.e., the application concept, the hypothetical posit we imagined and whose behaviour the specification

should capture. In both cases we obtain evidence from such a posit—if it is a real software artefact

by executing it; if it is a hypothetical posit by producing instances of its hypothetical behaviour.

The second actor is the specification, which is a theory supposedly explaining the behaviour of the

posit. Actually, when testing the relation between a posit and its specification what we test is the

‘correctness’ of such an explanation. In case the posit is a hypothetical one, we talk about validation

testing, i.e., the testing activity aims at answering the question ‘are we constructing the correct thing?’.

In the case the posit is a software artefact, we talk about verification testing and the testing activity

aims at answering the question ‘are we constructing this thing correctly?’. Finally, the third actor is

the property we are testing, which is a hypothesis we make about the posit and which should be tested

using the whole specification as a background theory. In other words, this hypothesis will be true if
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neering and Physical Sciences Research Council, UK), the Imperial College of Science, Technology and Medicine, London,

and PUC-Rio (Pontifı́cia Universidade Católica do Rio de Janeiro, Brazil).
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(and hopefully ‘only if’) the specification correctly ‘explains’ the hypothetical posit (validation), or if

the software artefact is ‘correct’ with respect to the specification (verification).

This setting resembles very closely the one of testing of scientific theories, i.e., of testing the

‘correctness’ of the explanation a particular scientific theory supports about certain phenomena. As

soon as we investigate the relation between the two settings, its resemblance is compelling (see [12,

5]). The specification corresponds to the scientific theory, whilst the posit the specification describes

corresponds to the phenomenon the scientific theory explains.

Let us denote by T � the specification (or background theory),1 H the hypothesis under test, and

E the evidence produced by the posit. The problem of relating the evidence emerging from a phe-

nomenon with the theory explaining it, i.e., the problem of logically explaining how some evidence,

which is a piece of observation, can refute or confirm a hypothesis on the basis of a theory2 explain-

ing such a phenomenon (both stated in a theoretical language), was one of the major issues of the

Philosophy of Science (Epistemology) of the Twentieth Century.

In Fig. 1 the two major strategies to relate theory and evidence are depicted. The most popular

one is illustrated on the right-hand side of the figure. There, from the theory T � [ fHg a predic-

tion EP about the evidence E is derived using the logic underlying both the so-called theoretical and

observational segments of T � [ fHg. (We will succinctly discuss these segments below.) Then, the

experiment consists in comparing the predicted evidence EP with the one produced by the posit, i.e., E.

The experiment is successful if the prediction holds, unsuccessful otherwise. This strategy is called in

the epistemological jargon the hypothetico-deductive strategy (in the sequel abbreviated to HD); after

proposing a hypothesis about the posit, and in the presence of a background theory T �
= T �, a pre-

diction of an evidence is deduced from the two together and then compared with the actual evidence.

As we show below, certain conditions should hold for this strategy to be sound.

The left-hand side of Fig. 1 pictures an alternative strategy, which is also intuitive. This strategy is

called the bootstrap strategy in the epistemological jargon. Again, the purpose is to test a hypothesis H

about a posit on the basis of a background theory, this time T �
= (T � [ fHg)�.3 From an evidence E

produced by the posit and by means of a set of functions f fT �

x
g derived from T � (using its underlying

logic), obtain a valuation α for the variables fxg of H . Then, the experiment consists in determining if

1Theory presentations are denoted by T , T , etc.; theories obtained from those presentations (i.e., presentations closed

under inference) are denoted by T �, T �, etc.
2In Epistemology literature it is usual to read “on the background of a theory” instead.

3By abuse of notation we also write T �
= T � [ fHg.
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the valuation α makes H valid, in which case the experiment is successful, otherwise it is unsuccessful.

As in the case of HD, certain conditions on the derivation of the set f fT �

xg must hold for the strategy

to be sound. The bootstrap strategy (as well as HD) is based on Carnap’s ideas; in Glymour’s words,

Whenever our evidence is stated in terms narrower than those of our theory, [one of Carnap’s ideas]

contains a stratagem for making the connection between evidence and theory: use [the background

theory] to deduce, from the [evidence], instances of [the hypothesis].

&T def
x Evar H T x T H

α : x x
x Evar H

E EP

x fT x
CT ε j : j Ix Ix J
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Figure 1: Testing strategies

According to which

kind of testing we are per-

forming, after applying

any of the above strate-

gies, modus tollens dic-

tates the course to fol-

low. In the case of veri-

fication testing of a soft-

ware artefact against its

specification, if the exper-

iment was unsuccessful,

then the software artefact

must be revised. In the

case of validation testing

of a specification against

a hypothetical posit, if

the experiment was un-

successful, then the specification must be revised. In both cases, if the experiment was successful, the

only information we have is exactly that. Transforming this information into a confirmation means ei-

ther performing infinitely many experiments or introducing some kind of uniformity hypothesis about

the domain of the evidence enabling a finite partition of it into uniform subdomains such that it is suf-

ficient to test one representative of each one of these subdomains. This paper will not deal with this

last problem; its purpose is to introduce the bootstrap strategy as an appropriate one for specification-

based black-box testing, and to show why HD is woefully inadequate.

In this paper we denote a theory by T � to emphasise the fact that a theory is the closure of
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a (usually finite, modulo axiom schemata) theory presentation (or axiomatisation) T L by means of

the inference rules of the underlying logic L. Notice that we have here another potentially infinite

dimension for testing. Whatever strategy we use, we should test infinitely many hypotheses to cover

the whole theory. However, if we have a finite theory presentation (modulo axiom schemata), we can

use it instead of the whole theory, i.e., use its axioms as hypotheses.

Notice that evidence E is stated in a different language than theories and hypotheses. For express-

ing the former, a restricted language denoting observables and with a restricted logic suffices. For

instance, the property ‘this brick is red’ denotes a directly observable fact, i.e., the redness of this

particular brick. Moreover, the sentence ‘all the bricks I am talking about are red’ is a generalised

(finite) conjunction of atomic sentences. In other words, the universal quantifier of the logic accom-

panying the language of observables must be finite, as we cannot observe infinitely many properties.

The notion of direct observation can be relaxed to those things observed via ‘accepted’ instruments, a

microscope when observing cells, or an oracle when observing software artefact behaviours.

In contrast, the language in which theories and hypotheses are stated must be rich enough to

capture concepts, be they observable or not. Moreover, the accompanying logic must provide infinite

quantifiers, modalities, etc. For instance, if the domain of the quantifiers were not infinite, a scientific

theory would be transformed into an empirical generalisation.

The existence of these two sublanguages and their accompanying logics with different expressive

and deductive power, is the root of the problem of testing alluded to above. In Glymour’s words [11],

[ : : : ] how can evidence stated in one language confirm hypotheses stated in a language that outstrips

the first? The hypotheses of the broader language cannot be confirmed by their instances, for the evi-

dence, if framed in the narrower tongue, provides none. Consistency with the evidence is insufficient,

for an infinity of incompatible hypotheses may obviously be consistent with the evidence [ : : : ].

All these problems were deeply studied by the so-called logical-empiricist philosophers, in par-

ticular by the members of the Vienna Circle. Rudolf Carnap formally introduced the observational-

theoretical dichotomy by means of a theory known today as The Statement View of Scientific Theories

(in short The Statement View) in the 38 years between 1928 [2] and 1966 [3].

In the context of the Statement View, whenever we have an empirically interpreted theory T � we

have two disjoint subtheories of it, a theoretical one, whose presentation is TT = (ΣT
T ;AxT

T ), and a

purely observational one, whose presentation is TO = (ΣT
O ;AxT

O ), related by a set of correspondence

rules CT , which provides the only empirical interpretation of TT . Therefore, we have two languages
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generated by the vocabulary of T �, the theoretical one (which we will call LT
T ) and the observational

one (which we will call LT
O ). Observable facts are stated in LT

O . We will refer to such observable

facts as evidence. The requirement that the set of correspondence rules provide the only empirical

interpretation of the theoretical subtheory preserves the safeness of observational consequences. That

is, some theoretical symbols are given empirical interpretation, by the correspondence rules, in terms

of the observational symbols. The theoretical symbols whose meaning is not definitionally given

by the correspondence rules are not interpreted further. Their properties are given by relating them

with the already interpreted theoretical symbols by means of the deduction mechanisms provided by

the underlying logic. This means that there are more theoretical symbols than observational ones.

Therefore, it is easy to see that LT
T outstrips LT

O in expressive power. This difference is due, on the

one hand, to the above mentioned ‘difference in size’ of the corresponding vocabularies, and on the

other, to the logic underlying the theoretical and the observational segments of the theory.

Outline In Sect. 2 we present the hypothetico-deductive strategy in detail and discuss its flaws. In

Sect. 3 we introduce in detail the bootstrap strategy for deterministic evidence and, in Sect. 4, we

apply it to the verification testing of a toy deterministic program. In Sect. 5 the bootstrap strategy is

adapted to non-deterministic evidence, whilst in Sect. 6 its application to the verification testing of a

toy non-deterministic program is presented.

2 The hypothetico-deductive strategy

Let us recall Fig. 1. In the HD strategy the hypothesis H and the theory T � are used to derive a

prediction EP, and then some actual evidence E is used to determine whether or not the prediction is

true, i.e., if E j= EP. The hypothesis H is stated in the theoretical language; the background theory T �

is an interpreted theory containing its theoretical part, its observational part, and its correspondence

rules; finally, the prediction must obviously be stated in the observational language. In order to derive

the prediction from the union of the theory and the hypothesis, the theoretical terms appearing in the

latter must have a direct (by means of some correspondence rules) or indirect (by means of inference

and some correspondence rules) empirical interpretation.

A HD schema is a triple hT �
;H;EPi where T �, H , and EP are as in our scenario above, and the

following three conditions hold:

(i) T � [ fHg is consistent
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(ii) H;T � ` EP

(iii) T �
0 EP

Then, as we said before, E j= EP does not refute H w.r.t. T �, whilst E 6j= EP refutes H w.r.t. T �.

Let us analyse these conditions. The first one is obvious; if T � [ fHg were inconsistent, then

any prediction could be derived from it. The second condition is the essence of the HD strategy.

Finally, the third condition prevents us from affirming that H is tested in the case that T � suffices

for predicting EP. Notice that we are using T � instead of T �: the reason is the necessity of stating

condition (iii). Therefore, when using the HD strategy, we should consider T � [ fHg as the theory

explaining (making an appropriate prediction EP) for E, but H can only be confirmed w.r.t. some T �,

i.e., w.r.t. a subtheory of T �.

The outstanding problems of the HD strategy are the following. First, E can never refute or

confirm (for the precise meaning of confirmation recall the discussion of page 3 in the introduction)

w.r.t. T � any consequence of T � itself; notice, however, that, if H is a consequence of T �, then

it can be confirmed with respect to H ! T �, i.e., w.r.t. a subtheory of the original theory T � such

that conjoining it with the hypothesis is logically equivalent to T � (see [10]). Second, if EP is not a

tautology, E j= EP, and L is any consistent sentence such that EP 0 L, then L is confirmed by E w.r.t. a

true theory (namely L! EP). Third, if H is confirmed by E w.r.t. T �, then so is H^K, where K is any

sentence whatsoever that is consistent with H and T �. (Recall the property known as reinforcement of

the antecedent of classical propositional logic.) The first difficulty might be tolerated were it not for

the other two; together, they make the HD account untenable.

There were different attempts to save the HD strategy. Let us consider, for instance, Merrill’s

attempt to overcome the third difficulty (see [15]). Additionally to the above listed three conditions,

we should corroborate the fact that there do not exist sentences K, L, and M such that:

(iv) ` H$ K^L

(v) K 0 H

(viii) L 0H

(ix) M 0 H

(viii) 0 M$ L

(ix) K;M;T � ` EP

(x) T � [ fK;Mg is consistent

which in English means that if H is a conjunction, then no one of its conjuncts L (or any M equivalent

to L) suffices for deriving EP.

Unfortunately, Glymour showed (see [10]) that this addition leads to circular reasoning, i.e., EP `

H . The proof can be sketched as follows. Assume that T �, H , and EP satisfy (i), (ii), and (iii) above.
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Suppose that ` (H $ (T �  EP)), then (T �  EP) ` H by the deduction theorem and, given that

EP ` (T � EP), then EP ` H . Suppose now that 0 (H $ (T � EP)), then we let K be (T � EP),

L be ((T � EP) H), and M be any tautology. In this case, and using the deduction theorem and

modus ponens, as well as reasoning by reductio ad absurdum, it can be shown that K, L, and M satisfy

(iv)–(x). Thus if EP is a prediction by means of the hypothetico-deductive strategy, then necessarily

` (H$ (T � EP)) as in the first case above, which means that EP ` H .

Moreover, Glymor has proved in [10] that another suggested attempt to save the HD strategy by

adding additional constraints does not help. Even a late attempt to lend credibility to hypothetico-

deductivism by using relevance logic (see [16]) instead of classical logic was not successful, since

relevance logic itself was not yet well accepted.

Because of the failure of the HD strategy, specification-based black-box testing methods based on

it (or on rudimentary versions of it), for instance the method proposed in [7, 8, 9] (for its criticism on

the basis of this setting see [5]), have inherent and insurmountable problems. This problem led us to

the consideration of the bootstrap strategy as an alternative basis for a methodology for specification-

based black-box verification testing of software artefacts and for validation testing of specifications

against the application concept.

3 The bootstrap strategy for deterministic evidence

We present here the bootstrap testing strategy for the case of theories over existential (in)equational

logic EEQ+ (called simply EEQ if inequalities are not involved), i.e., the logic underlying systems of

n (in)equations with m unknowns. For the sake of simplicity, we assume that there is no α-conversion.

Let A = hA;�i be an algebra with a natural order. Let T � be a theory, let H be an equation (or

inequality), and let both be mutually consistent. Let E = fε j : j 2 Jg be a set of variables, and let

E = fε j : ε j 2 A and j 2 Jg be a set of values for the variables in E (these variables and their values

belong to the observational language), which once lifted by the set of correspondence rules CT �

are

consistent with H and T �.

Bootstrap testing schemata are three place relations hT �
;H;Ei, where T � is a theory, H the hy-

pothesis to be tested with respect to this theory, and E the evidence which can refute H with respect to

T �. In general, to be considered a bootstrap testing schema, hT �
;H;Eimust satisfy a set of conditions

such as (i) to (iv) below. Of the bootstrap schemata we introduce only one. All of them coincide in
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satisfying conditions (i), (ii) and (iv) below; the difference between them resides in the requirement

stated by each one’s condition (iii).

We begin by stating the Schema I for the deterministic case. In order to do so, we need to introduce

some concepts and notation. A subtheory of a theory T � is a theory T1
� such that T � ` T1

�; two

theories are equivalent if each one is a subtheory of the other. A variable is essential to an (in)equation

K if it occurs in every (in)equation equivalent to K; the set of essential variables of K is denoted by

Evar(K). (Recall that we do not have α-conversion.)

The Schema I of bootstrap testing is defined as follows. Given hT �
;H;Ei, for each x 2 Evar(H)

let T �
x be a subtheory of T � such that:

(i) T �
x determines (the value of) x as a function of a set of variables indexed by Ix,

which is a subset of the evidence E = fε j : j 2 Jg,

denoted by x = fT �

x
(CT �

(ε j : j 2 Ix^ Ix � J)).4

(ii) The set of values for the variables in Evar(H)

given by x = fT �

x(C
T �

(ε j : j 2 Ix^ Ix � J))

satisfies H .

(iii) There is no (in)equation K with Evar(K)� Evar(H)

such that H;&T � ` K and K;&T � `H .5

(iv) For all x 2 Evar(H), there is no (in)equation K with Evar(K)� Evar(T �
x)

such that `H ^T �
x$ fKg.

If conditions (i) to (iv) above are met, E is said to provide a positive test of H with respect to T �.

The motivation for the conditions above is as follows:

Condition (i) The requirement that a value be determined for each quantity occurring essentially in

H reflects a common prejudice against theories containing quantities that cannot be determined from

the evidence. Given hT �
;H;Ei, when values for the basic quantities occurring in H have not been

determined from the evidence E using some theory T �, then E and the relevant fragment of T � do not

of themselves provide reason to believe that those basic quantities are related as H claims them to be.

4We denote by fT �

x
the function (determined by subtheory T �

x) which assigns a value to the essential variable x as a

function of the fε j : j 2 Ix ^ Ix � Jg translated by the set of correspondence rules CT �

.
5&T � def

= (
S

x2Evar(H)T �

x)
�. Notice that if T �

x is presented by an axiomatisation Tx, then &T � def
= (
S

x2Evar(H)Tx)
�. In

this latter case we denote by &T the axiomatisation
S

x2Evar(H)Tx.
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Condition (ii) Obvious.

Condition (iii) Suppose there exists an (in)equation K such that Evar(K) � Evar(H), H;&T ` K

and K;&T ` H . Let y 2 Evar(H), y 62 Evar(K). This means that y is essential to H , but not

to H in conjunction with &T . In other words, y could take any value, independent of the ev-

idence fε j : j 2 Iy^ Iy � Jg. Therefore, the evidence E = fε j : ε j 2 A and j 2 Jg and the method

fx = fTx
(CT �

(ε j : j 2 Ix^ Ix � J))g
x2Evar(H)

of computing quantities in Evar(H) from the evidence

would fail to test the constraints H imposes on y. Thus, a significant component of what H says

would go untested.

Condition (iv) Consider the theory presentation T : fx = y;c = dg and the hypothesis H : x = y with

E = fx;y;c;dg.6 For simplicity, and because the theoretico-observational distinction is not relevant

for this discussion, let us suppose that the correspondence rules are, in this case, identity functions,

therefore, we identify observational and theoretical variables. The set Evar(H) is fx;yg, and a positive

test of H w.r.t. T is any set E = fx;y;c;d j x = yg, because, applying conditions (i) to (iv), (i.e., the

schema above), Tx : x = x and Ty : y = y. This means that whatever values c and d take, the hypothesis

H : x= y will not be refuted with respect to theory T provided the evidence satisfies x = y. Notice that

a T 0
x : x= y+(c�d) is rejected by condition (iv) because there exists K : y= y+c�d with Evar(K) =

fy;c;dg included in Evar(T 0
x) = fx;y;c;dg such that ` H ^T 0

x$ K. If we eliminate condition (iv)

and, therefore, accept T 0
x : x = y+(c�d), then the evidence E = fx;y;c;d j x = y^ c 6= dg will refute

H : x = y although T does not establish any link between variables x and y, on the one hand, and c

and d, on the other.

4 Bootstrap testing of a deterministic program

In this section we apply the Schema I of bootstrap testing presented above to an example. First, let

us recall that the way of declaring our intention of what is observable and what is not, is by stating

appropriate correspondence rules relating the evidence with the theory (that is, observables can be

single quantities and not necessarily a whole sort).

Let SPEEQ be the specification (or theory presentation) over the logic EEQ of a program with

input fx1;x2;x3;x4g and output x10 given at the top of Fig. 2, where AxBA is the set of axioms of

6We denote by L : fϕ1; : : : ;ϕng a system named L consisting of the formulae ϕ1; : : : ;ϕn. This is abbreviated to L : ϕ if

the system consists of just one formula.
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Boolean algebra. Suppose we want to verify the integrated circuit at the bottom of Fig. 2 against the

specification SPEEQ. The evidence is obviously constituted by sets E = fε1;ε2;ε3;ε4;ε5g of values for

variables ε1, ε2, ε3, ε4, and ε5.

Assume that the values of ε1, ε2, ε3, ε4, and ε5 in CH0106 are related, respectively, to the variables

x1, x2, x3, x4, and x10 in SPEEQ as detailed in Fig. 2. Notice that the values εi for εi (i = 1;2;3;4;5)

can be either 0V or 5V (where V stands for volts), whilst variables x1, x2, x3, x4, and x10 in SPEEQ can

only take values 0 and 1.

SPEEQ ΣSP Ax SP

ΣSP Bool F
F 0 1 : Bool

: Bool Bool Bool
Ax SP Ax BA x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x5 x1 x2

x6 x2 x3

x7 x5 x6

x8 x6 x4

x9 x7 x8

x10 x9 x4

 2
 3

ε 5

G1

G2

G3

G4

G5

G6

a

b

c

d

e

 4ε
ε
ε

 1ε

CH0106

CSP
2CSP

1 CSP
5CSP

4 CSP
3

* * * * *

Figure 2: A testing setting

The set CSP�

of correspondence rules is there-

fore constituted by five rules:

� four correspondence rules CSP�

1 , CSP�

2 , CSP�

3 ,

and CSP�

4 , describing the procedure for intro-

ducing into the pins labelled ε1, ε2, ε3, and

ε4 of the integrated circuit CH0106, an ap-

propriate signal (0V or 5V) corresponding

to a particular valuation (0 or 1) for variables

x1, x2, x3, and x4, as well as

� a correspondence rule CSP�

5 describing the

measurement procedure to be applied to the

output pin labelled ε5 of CH0106 for assign-

ing to variable x10 its corresponding value (i.e., 0 or 1).

In order to verify the circuit against the specification, we have to derive a set of experiments. Each

one of these experiments tests the circuit against a particular hypothesis H on the basis of the (theory

generated by the) specification (theory presentation) SPEEQ. The set of chosen hypotheses must cover

SP�. Therefore, a natural choice for the hypotheses are the axioms of the presentation SPEEQ. Let us

test, for instance, H : x7 = x5 � x6.

At this point let us emphasise that, as is the case in this example, we can do this, even when the

essential variables of the hypothesis are not related to any symbol of the observational vocabulary by

any correspondence rule.

In the general case, what the test can do is to refute our theory or, at best, not to refute it. In this

particular case, since the observable variables range over the Booleans, i.e., the set f0;1g, there is a
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finite set of possibilities for the evidence, i.e., each one of the combinations of valuations of ε1, ε2, ε3,

ε4, and ε5 with the set f0V;5V g. Therefore, we can exhaustively test H with respect to SPEEQ. Thus,

in this particular case, we can confirm H .

Given that Evar(H) = fx5;x6;x7g, three subtheories SP�
x5 , SP�

x6 , and SP�
x7 of SP� should be de-

rived for determining the values for the variables in Evar(H) as functions of CSP�

(E), where CSP�

(E)

is the evidence E ‘seen’ through the set of correspondence rules CSP�

.

First attempt

program P1
var , , , :Bool
function + (x,y:Bool):HBool
function + (x:HBool;y:Bool):HBool
function + (x:HBool;y:Bool):Bool
function (x:HBool;y:HBool):HBool
function (x:Bool;y:Bool):HBool
function a(x,y,z,t:Bool):HBool
return x + y
function b(x,y,z,t:Bool):HBool
return y z
function c(x,y,z,t:Bool):HBool
return a(x,y,z,t) b(x,y,z,t)
function d(x,y,z,t:Bool):HBool
return b(x,y,z,t) + t
function e(x,y,z,t:Bool):HBool
return c(x,y,z,t) d(x,y,z,t)
function z(x,y,z,t:Bool):Bool
return e(x,y,z,t) + t
begin

input( , , , )
output(z( , , , ))

end

Figure 3: A possible implementation

For instance, we can present the subtheories as follows:

SPx5 : x5 = x1 + x2

SPx6 : x6 = x2 � x3

SPx7 : x7 = (x1 + x2)� x2 � x3

Therefore, we have

H;&SP :

8>>>>>><
>>>>>>:

x7 = x5 � x6

x5 = x1 + x2

x6 = x2 � x3

x7 = (x1 + x2)� x2 � x3

Notice that &SP ` H , and therefore condition (iii) is violated

because there exists K, namely K : x7 = x7, with Evar(K) =

fx7g � Evar(H) = fx5;x6;x7g and both H;&SP ` K and

K;&SP ` H (in fact, K could be any tautology with fewer variables than H).

What has violated condition (iii)? We have used a misleading way of calculating a value for the

essential variable x7, i.e., a biased value calculated by using only the ‘input evidence’ Enfε5g instead

of a value calculated involving the measurement CSP�

1�i�5(E) of the whole ‘input/output’ evidence E.

What was wrong in this first attempt? The choice of &SP�.

Second attempt

So, we must obtain a more appropriate set of subtheories SP�
xi . Notice that, from SPEEQ, we can derive

11



x10 = x9 + x4

= (x7 � x8)+ x4

= (x7 � (x6 + x4))+ x4

= (x7 � ((x2 � x3)+ x4))+ x4

= (x7 + x4)� ((x2 � x3)+ x4+ x4)

= (x7 + x4)� ((x2 � x3)+ x4)

= (x7 � x2 � x3)+ x4

multiplying both sides by x4,

x10 � x4 = (x7 � x2 � x3 � x4)+(x4 � x4)

= x7 � x2 � x3 � x4

which functionally determines a value for x7 iff x2 � x3 � x4 = 1, i.e., iff x2 = 1 = x3 and x4 = 0.

Therefore, we present

SPx7 : x10 = x7

From SPx7 , H , and SPEEQ, one can derive

x10 = x5 � x6

= (x1 + x2)� x2 � x3

= x2 � x3

which is the so-called representative of H .

Notice that

H;&SP :

8>>>>>><
>>>>>>:

x7 = x5 � x6

x5 = x1 + x2

x6 = x2 � x3

x10 = x7

and there is no K that could violate condition (iii).

Hence, given the restriction x2 = 1 = x3 and x4 = 0 to the valuation of variables x1, x2, x3, x4,

and x10 imposed by the subtheories SP�
x5 , SP�

x6 , and SP�
x7 , the set of test cases is reduced to the two

instances obtained by setting x1 to 0 and observing if the value of x10 is 0 or 1, and repeating the same

observation after setting x1 to 1. In order to do this, we should use the procedures described in the

correspondence rules CSP�

1 , CSP�

2 , CSP�

3 , and CSP�

4 for applying the correct signals to the input pins ε1,

12



ε2, ε3, and ε4; and the procedure described in CSP�

5 for measuring the output value in the pin ε5. Notice

that the evidence will provide a positive test of H with respect to SP� only in the cases in which the

value of x10 is 1, i.e., when ε5 is measured to be 5V .

program P2
var , , , :Bool;count:Int
begin

input( , , , )
if then output(true)
else count:=0

if then count:=count+1 endif
if then count:=count+1 endif
if count>1 then output(true)
else output(false)
endif

endif
end

Figure 4: An alternative implementation

A possible implementation of SP� is the functional pro-

gram P1 in Fig. 3. Notice, however, that ‘an intelligent’

programmer or an optimising transformation system (for in-

stance) could have produced the imperative program P2 in

Fig. 4. In this alternative implementation there are no Boolean

functions at all; nevertheless hypothesis H : x7 = x5 � x6 can

still be tested because SPEEQ also explains the behaviour of

P2. This example shows the power of the bootstrap strat-

egy in performing black-box testing taking into account only

the specification structure, the property under test, and the in-

put/output relation of the program implementing the specification. In [5] we show that P2 would

be rejected by the approach of [9], simply because the P2 does not implement every axiom of the

specification.

5 The bootstrap strategy for non-deterministic evidence

Bootstrap schemata for deterministic evidence provide means for determining whether or not some

evidence provides a positive test of a hypothesis with respect to a theory, where a hypothesis is either

an equation or an inequality. However, even the latter option of the hypothesis being an inequality

does not fully account for the application of bootstrap testing to non-deterministic sets of evidence

(as for example the one generated by a non-deterministic program), since the subtheories T �
x must

functionally determine a valuation for x 2 Evar(H). (In the simplest case, they explicitly describe

functions.) For making bootstrap testing fully applicable to the case of non-deterministic sets of

evidence, we need to generalise the setting by allowing the subtheories to (non-vacuously) include

inequalities so as to allow the variables to become set valued. (In the discussion below, given a

function f : D! I and given E �D, we let f (E) denote the set f f (d) : d 2 Eg.)

Now suppose that, in a setting such as that for schemata for deterministic evidence above, for

each j 2 J, the evidence ε j takes its values from a set ∆ j. Then, for each x 2 Evar(H) we have five

13



possibilities, namely:

1. If x = fT �

x(C
T �

(ε j : j 2 Ix^ Ix � J)),

then we let x = fT �

x
(CT �

(∆ j : j 2 Ix^ Ix � J)).

2. If x > fT �

x
(CT �

(ε j : j 2 Ix^ Ix � J)),

then we let x = fa : if b 2 fT �

x
(CT �

(∆ j : j 2 Ix^ Ix � J)), then a > bg.

(An alternative is to make x = fa : there exists b 2 fT �

x(C
T �

(∆ j : j 2 Ix^ Ix � J)) s.t. a > bg.)

3. If x < fT �

x(C
T �

(ε j : j 2 Ix^ Ix � J)),

then we valuate x analogously to the preceding case.

4. If x� fT �

x
(CT �

(ε j : j 2 Ix^ Ix � J)),

then the value of x is calculated as the union of the set values given by cases 1 and 3.

In case x� fT �

x
(CT �

(ε j : j 2 Ix^ Ix � J)), we proceed analogously.

5. If the value of x 2 Evar(H) is determined by a collection of inequalities, then the (set-value) of

x is the intersection of the sets given by those inequalities separately.

Now, evidence E = f∆ j : j 2 Jg provides a positive test of a hypothesis H with respect to a theory

T � according to the bootstrap schemata for deterministic evidence, if on the one hand, for each x 2

Evar(H) there exists a value in x such that these values satisfy H in the usual way, and on the other

hand, the other conditions of the schema in use are met.

The reader might be disturbed by the requirement that a single value of x for each x 2 Evar(H)

satisfying H suffices. This seems to mean that a non-deterministic program is considered correct when

at least the value produced in one of its executions satisfies H . What about the values x produced in

other executions not satisfying H , should they be accepted? However, we must recall that the defini-

tion of the bootstrap schemata requires that E be consistent with H and T �, and therefore, both pre-

and postconditions of the program must be satisfied for the evidence E to be able to provide a positive

test of H w.r.t. T . This requirement on the evidence E stands for an universal quantification overriding

the troublesome existential one above for all input/output (observable) variables. Therefore, the weak

existential condition above applies only to internal (non-observable) variables.

6 Bootstrap testing of a non-deterministic program

14



CONVEEQ ΣCONV AxCONV

ΣCONV F

F :

AxCONV m1 n1 m2 n2 m3 n3 x y 0 m1 m2

0 n1 n3
m2n1 m1n2 m3 n2 n1

m2 m1

n2 n1

m3 0

y m1x n1

y m2x n2

y m3x n3

x 0

y 0

Figure 5: The specification CONVEEQ+

Let us now apply the variant of Schema I

for theories containing inequalities and set-

valued variables to the verification of a non-

deterministic program.

Consider the specification CONVEEQ+ over

the logic EEQ+ given in Fig. 5. (We as-

sume that the universally quantified variables

are sorted by the correspondence rules in such a

way that their constraints, i.e., those conditions

involving only those variables and perhaps con-

stants, are satisfied.)

A geometrical interpretation of this specification is the one depicted in Fig. 6, where the surface

filled with the parallel vertical line pattern represents the convex polygon defined by the inequalities

y � m1x+ n1, y � m2x+ n2, y � m3x+ n3, x > 0, and y > 0. (That is, the polygon enclosed by the

lines L1 : y = m1x+ n1, L2 : y = m2x+ n2, L3 : y = m3x+ n3, and the coordinate axes.) Notice that

the convex polygon in Fig. 6 satisfies the conditions 0 < m1 < m2 and m3 < 0 in CONVEEQ+ . Notice

as well that the point hx0;y0i exists because m1 6= m2, and that therefore, k = m2n1�m1n2+m3(n2�n1)

m2�m1
also

exists. Finally, notice that the convex polygon in Fig. 6 also satisfies conditions 0 < n1 < n3 � k and

n2 < n1 in CONVEEQ+ .

y = m3x + n3

y 
=

m
2
x 

+
n 2

y =
m1x + n1

X

Y

1k =
m2n1 m1n2 m3 n2 n

m2 m1

x0
n1 n2

m2 m1

y0
m2n1 m1n2

m2 m1

Figure 6: A geometrical interpretation of CONV�

As is the case with any specification,

CONVEEQ+ can specify many programs, in par-

ticular the non-deterministic program Pnondet

whose input/output diagram is the one depicted

in Fig. 7. We will consider that the corre-

spondence rules are identity functions, there-

fore for the sake of simplicity we will use

the set fm1;n1;m2;n2;x;yg as the evidence,

instead of using the actual evidence E =

fε1;ε2;ε3;ε4;ε5;ε6g and the set of correspon-

dence rules. Here, we assume that the univer-

sally quantified variables are sorted by the cor-
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respondence rules in such a way that constraints imposed on them by CONVEEQ+ are satisfied. In

other words the data fm1;n1;m2;n2g with which program Pnondet is fed is such that 0 < m1 <

m2^n2 < n1^0 < n1.

ε5 ↔ x
C CONV

5

ε6 ↔ y
C CONV

6

m1 ↔ ε1
C CONV

1

n1 ↔ ε2
C CONV

2

m2 ↔ ε3
C CONV

3

n2 ↔ ε4
C CONV

4

Pnondet

Figure 7: The input/output diagram of Pnondet

The informal description of the intended seman-

tics of the program Pnondet is as follows: each time

a set of values fm1;n1;m2;n2g is fed into Pnondet,

1. it randomly chooses suitable values m3 and n3

for m3 and n3, respectively, satisfying the con-

ditions imposed on them by CONVEEQ+ ;

2. then, it chooses, also randomly, any pair hx;yi of coordinates for a point lying inside the convex

polygon defined by the constraints y� m1x+n1, y� m2x+n2, y� m3x+n3, x > 0, and y > 0

also imposed by CONVEEQ+ ;

3. finally, it outputs the values x and y.

y = 0.5x + 4

y
=

2x
- 8 x0

n1 n2

m2 m1

y0
m2n1 m1n2

m2 m1

X

Y

input

1

2

3
4

5

6

7

8

9
10

11

12

13
14

15

16

17

18
19

20

21 ♠

Figure 8: Output generated by 21 executions of Pnondet

Thus, Pnondet has an obviously non-

deterministic behaviour, since, after ran-

domly choosing values for the coefficients of

the straight line y = m3x+ n3, (thus defining

a particular convex polygon), it produces as

output an also randomly chosen pair hx;yi of

coordinates defining a point lying inside this

convex polygon.

Now, let us suppose we fed Pnondet 21

consecutive times with values m1 = 0:5, n1 =

4, m2 = 2, and n2 = �8. As we said above,

each time (i.e., in each execution), Pnondet

will first randomly choose values m3 and n3, thus defining a particular convex polygon.

In each one of these 21 executions, Pnondet produces an output pair of values hx;yi defining

the points depicted in Fig. 8 (see also in the table in Fig. 9, columns m1, n1, m2, n2, x, and y, which

exhibit the input/output relation defined by the 21 executions of Pnondet in question).
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The purpose of this example is to test (using the variant of Schema I for non-deterministic pro-

grams) whether or not the behaviour of Pnondet satisfies its intended semantics (and, therefore, if it

is correct with respect to CONVEEQ+). Thus, what we should do now is to test each one of the axioms

of CONVEEQ+ (on the basis of CONV�), using the input/output relation produced by the 21 executions

of Pnondet as evidence. To do this, we need to derive, for each one of the essential variables z of

each one of these axioms, an appropriate CONV�
z. However, it will suffice as an example to analyse

only the testing of H1 : m3 < 0 and H2 : n3 � k.
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Figure 9: Data for the testing of hypotheses H1 and H2

So, let us begin with H1 : m3 < 0. It is ob-

vious that it has just one essential variable, i.e.,

m3. Therefore, we need to derive only a sub-

theory CONV�
m3 . Notice that for this deriva-

tion, we can use all the axioms of CONVEEQ+

with the exception of m3 < 0 itself, because

we would otherwise violate condition (iii) of

Schema I. To see why, suppose we allow the

use of m3 < 0 in the derivation of CONV�
m3 ,

then it is obvious that &CONV `H1. This leads

to the violation of the said condition (iii) be-

cause for any ground tautology K in CONV�,

since K has no variables and hence Evar(K) �

Evar(H1) = fm3g, obviously &CONV;K ` H1

and &CONV;H1 ` K holds.

Then, let us use the inequalities

n1 < n3 �
m2n1�m1n2 +m3(n2�n1)

m2�m1
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From them we obtain that

n1 <
m2n1�m1n2+m3(n2�n1)

m2�m1

(m2�m1)n1 < m2n1�m1n2 +m3(n2�n1) since m2�m1 > 0

m2n1�m1n1 < m2n1�m1n2 +m3(n2�n1)

m1n2�m1n1 < m3(n2�n1)

m1(n2�n1) < m3(n2�n1)

m1 > m3 since n2�n1 < 0

that is,

CONVm3 : m3 < m1

which is a presentation of CONV�
m3 .

In the table of Fig. 9 we have one column under the key H1 : m3 < 0. Notice that CONVm3 is of

the type referred to in case 3 (on page 14). Therefore m3 = (�∞;0:5] and the H1 : m3 < 0 is satisfied

since there exists a value in m3 smaller than 0.

Let us now test the hypothesis H2 : n3 � k = m2n1�m1n2+m3(n2�n1)

m2�m1
on the basis of CONV�. The set

Evar(H2) of essential variables of H2 is fm1;n1;m2;n2;m3;n3g. Given that m1, n1, m2, n2 are part of

the evidence, their corresponding subtheories can functionally determine them. So, we set

CONVm1 : m1 = m1

CONVn1 : n1 = n1

CONVm2 : m2 = m2, and

CONVn2 : n2 = n2

From y� m3x+n3, and given that, according to CONV, n3 as well as x are positive and m3 negative,

we can deduce that y < n3. The subtheories for m3 and n3 are then:

CONVm3 : m3 < 0, and

CONVn3 : y < n3

Recall that a subtheory T �
z must constrain the value of z using only the evidence. Therefore, in the

case of m3, we cannot use the inequality y�m3x+n3, since we cannot eliminate n3, even using other

parts of CONV.

In the table of Fig. 9 we have three columns, now under the key H2 : n3 � k giving bounds for the

values of n3, of m3, and of k.
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Notice that CONVn3 is of the type referred to in case 2 (on page 14). Therefore n3 = (8:35;∞)

and H2 : n3 � k is not satisfied since there exists a value in m3 that makes k smaller than 8.35. (See

column ‘k lower bound using m3 = 0,’ calculated using the least upper bound 0 for m3.) This is due

to the point number 21 (labelled with � both in Fig. 8 and in the table in Fig. 9), which is obviously

outside any possible convex polygon.

Therefore, Pnondet is not correct with respect to CONV�.

If we analyse the table of Fig. 9, we can consider the upperbound calculated for m3 in the test of

H1 : m3 < 0 to be too coarse, because for any point i in Fig. 8, the least upperbound for m3 –not even

considering in its calculation the hypothesis H1– will be 0. Since the point i will obviously be inside

the convex polygon limited by L1, L2, the coordinate axes, and the line given by y = yi, m3 = 0 will

be a finer upperbound. However, we are testing Pnondet against the whole theory. Thus, we should

also consider that for this point i, we have a greatest lowerbound for n3 namely n3 = yi. Therefore, the

line limiting the minimum polygon in which the point i lies will be L : y = mx+ n with m < m1 and

n > yi; this line L is y = yi.

7 Conclusions

What we have presented is a very promising and powerful approach to specification-based verification

and validation testing of software process artefacts (i.e., software artefacts as well as specifications).

We have shown that the approach is useful for both deterministic and non-deterministic programs and

specifications.

This approach was developed using the general epistemological background sketched in Sects. 1,

3, and 5. We would like to emphasise that in doing this, as theoretical computer scientists, we pro-

ceeded more like epistemologists than as logicians or mathematicians in conducting our quest.

On the same basis, in Sect. 2 we have also discussed the flaws of the best known alternative to

the bootstrap strategy, namely the hypothetico-deductive strategy. These flaws prevent its use for

sustaining testing methodologies.

Whether in the framework of verification testing, it is worth noting the similarity between the

bootstrap core idea and the notion of implementation relation defined by refinement. Recall in Fig. 1

the valuation α induced by E, that has to be such that α j= H; in other words, the bootstrap strategy

requires that evidence provide instances of the hypothesis under test. Refinement requires that the
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relation defined by (the semantics of) a program be contained in the set of relations defined by (the

semantics of) a specification; see [1]. Thanks to the deduction theorem, both just mean that evidence

resp. program implies the specification.

As we said in the introduction, ‘exhaustive’ testing has two different dimensions. One is the ‘cov-

erage’ by the test of the whole specification to be tested. The other is the ‘exhaustion’ of the test

w.r.t. the (possibly infinite) domain of interpretation of the symbols in the specification. It seems that

our approach takes care of the first of these dimensions. However, we have presented it just for the-

ories over an existential (in)equational logic. Then, the bootstrap-strategy-based approach should be

extended to deal with theories over other logics of interest (e.g., classical first-order, temporal, deontic,

and dynamic logics) and with various kinds of semantics (for instance, transition systems). This is a

must if we intend to turn the approach to a practical one. Also the bootstrap testing of structured spec-

ifications and systems must be considered. The second dimension (which is the problem addressed by

Gaudel with her ‘uniformity hypotheses’) must be studied, for instance, in the light of Carnap’s and

Hintikka’s results on inductive logic and the general methodology of (scientific) induction [4, 13].

Comparing the bootstrap strategy with real software testing developments is a crucial issue. This

comparison should begin by an exhaustive analysis of the current testing methods in the light of

the epistemological framework here presented. A starting point could be, for instance, the method

reported in [6], whose similarity with this strategy was pointed out by C. Heitmeyer.
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