From Activity Diagramsto Class Diagrams

Jo&o-Paulo Barrost, Luis Gomes?

! Ingtituto Politémico de Beja ,Escola Superior de Teologia eGestéo,
AreaDepartamental de Engenharia 7800050 Beja, Portugal, jpb@estig.ipbeja.pt
2 Universidade Nova de Lisboa, Faauldade de Ciéncias e Teaologia, Department of
Electricd Engineaing, 2825114 Monte de Caparica, Portugal, lugo@uninova.pt

Abstract. A translation from adivity diagrams to classdiagrams, with exeautable
code, is presented. The trandation is amenable to be made with or withou
automating todls. An illustrative gplicaion example is also briefly presented:
Activity diagrams are used in the modelli ng and implementation o graphicd user
interfaces, more predsely in the @ntroller part of the Model-View-Cortroll er
pattern.

1 Introduction

It iswell know the difficulty in maintaining consistency aaossdifferent views of
the same system. The use of the Unified Modelling Language (UML), with their
multiple diagrams, can easily give origin to inconsistencies. The UML is more eaily
percaved as a union d modelling languages than as unificaion. As most systems
revolve aound the dass diagram, its generation is usualy given high priority.
Nevertheless many times, and particularly in event driven systems, a behavioura
model is a much more eay and intuitive starting pant. Among the behavioural
models, the adivity diagram is usualy nat given much attention. Thisis unfair as the
adivity diagram is adually very versatile and can be eaily used by wsers with very
different badkgrounds, namely in, procedural programming languages, flowcharts,
state machines, Petri nets and workflow systems. Note that this list includes almost all
kinds of designers with some previous experience in the modelling o dynamic
systems.

This paper presents an easily applicable trandation d adivity diagrams to class
diagrams. This can be gplied to any kind o system. One cae study is briefly
presented for modelling d the controller part of a Model-View-Controller pattern
throughthe use of an adivity diagram.

2 Activity Diagrams

As gated in the UML spedfication [1], an adivity diagram is a variation d a state
machine. Depending onthe badground d the user, an adivity diagram can seem like
aflowchart, a Petri net or some kind d workflow modelling ndation. It all ows avery

readable modelling d concurrency and o al elementary programming concepts,
namely: sequence, branch, loop, fork andjoin [2].

Activity diagrams are usually associated to a dassand, as such, they model the
operations flow inside the dass This flow can depend oninternal or external events.
Nevertheless the adivity diagram also allows a hierarchicd demmpasition, through
the use of subactivity states [1], and so it can model several classes related by class
aggregation. Through the use of external events we can even synchronise several
adivity diagrams.

3 Trandlation of Activity Diagramsto Class Diagrams

The proposed trandation hes the following oljedives:
1. To besufficiently smple so asto be routinely and consistently used, even
without supporting tools
2. To be sufficiently rigorous 0 as to amenable to automatic trandation by
suppatingtoadls
The anphasis on this paper is on the manual trandation d adivity diagrams to
class diagrams. The result of this trandation process will be presented by the
description d the resulting class diagrams representation with an associated code
skeleton. The simplicity of the generated trandation, namely its external interface
allows an easy integration with code generated from other models by ather methods.

| Propased translation | | General purpose UML Tool |

m———

Activity
diagrams

v

Classdiagrams with
embedded code

Activity
diagrams

v

Classdiagrams with
embedded code

Meta model

Translation
comporent

Fig. 1.Proposed tranglation (a) and utimate goal (b)

Figure 1(a) shows the referred process where UML meta models are implicitly
considered for the trandation suppat (athough no generated as they are not
amenable for manual editing). The ultimate goal of the present propasalsisto suppat
the development of a software cmporent, which will i mplement the propocsed
trandation process This comporent, based on UML meta models, will be anenable
to be used inside a atonomous trandation tod or integrated with a general purpose
UML based development tod. Thisis ill ustrated in Figure 1(b). In the next sedions,
we present the translation cetail s.

3.1 General Procedures

When trandating adivity diagrams to class diagrams ead adivity diagram will
map to ore dassin the dass diagram. Activity diagram in subadivity states are
trandlated to aggregated classes. Thisis in acordance with the subadivity spedfied
semantics which states that single adivity graph may be invoked by many subadivity
states. All adivity diagram elements are trandated to classelements in the following
way':

« Ead event maps to an event objed. Each event objed has a state (adive or
inadive), a list of aswociated transitions and a method that cdls al the
associated transition methods. All event objeds are made dements of an
event vedor which isa dassattribute.

» Ead adion state maps to an adion state objed. All adion state objeds are
made dements of an adion state vedor, which isa dassattribute.

e Transtions, dedsions, merges, forks and joins, map to class methods as
presented in the following sedions.

e Subadivity states map to attributes. Each o these dtributes belongs to a
classtrandated from the adivity diagram associated to the subadivity state.

The adion state objeds have four methods and ore state atribute: 1 sActive();
Set Active(); Setlnactive(); Action(); state.

The first method is a Boolean function that returns the objed state (adive or
inactive). The second and third ores change the state of the objed and the fourth ore
exeautes the asciated adion spedfied in the adion state.

' Bool ean st 1()
i stl | ; if (cas[1].isActive())
a) m AS2action() as[1]. acti on():

as[1] .setActive();

St : as[2] .setActive();
b) [ASlaction()] >lev S > [ASZaction()] return TRUE
i el se
return FALSE;

Fig. 2 - Transition trandation. One implicit event (a) and ore eplicitly spedfied event (b),
between two adion states give origin to the same transition method

Each transition is mapped to a Booean method that returns true if the transition
can fire and false otherwise (Figure 2). Here the term transition is considered in a
much more broader sense than in the adivity diagrams gedficaion, as al the set of
al arcs, control icons, dedsions and merges between two or more adion states are
considered part of a transition. In ather words, al inscriptions, arcs and nods
between adion states are considered part of the same transition and are trandated to
only one method We will cdl this broader concept of transition, super-transition so
asto dstingush it from the transitions in the adivity diagrams definition[1].

As the transition method is cdled by the adivating event (ev in Figure 2), the
transition can fire depending d its previous gates as well as of eventual guards
(Figure 2). If input states to the super-transition are adive the method das the
following: executes the adion asociated with the input adion state (ASladion() in

Figure 2); inadivates the inpu adions dates, adivates the output adion states,
returns true to signal success

Note that the testing d the adion states adivation is made based ona @py o the
adion states objeds (as will be detailed in §4).

The trandation d both super-transitions is the same. In case (@) the implicit event
cdls the method in case (b) the event ev cdls the method The implicit event is
always adive so asto suppart this behaviour.

The name stl is only for ill ustrative purposes as it is not part of the adivity
diagrams, insteal it is generated as part of the trandation process

The situation where an input event occurs but some or al asociated transitions are
not enabled can have two dgoint interpretations: it is an exceptional but alowed
occurrence it exposes a design error that shoud be deteded duing test or
verificaion phese. If that is the cae, the adion states adivity or inadivity ad like
pre-condtionsthat if not met will i mply a design error.

It is also interesting to consider the posshility of event methods with parameters,
which are pas=d to transition methods.

3.2 Trandation of Decisionsand Merges

As drealy stated, dedsions and merges are mnsidered part of super-transitions.
They typicdly have severa possble inpus and/or outputs. The mapping foll ows the
same basic structure of the simple transitions and adds dedsion structures to suppat
the multi ple posgble flows. Figure 3 presents an ill ustrative example.

Bool ean st 1() Bool ean st 3()
if (cas[1].isActive()) if (cas[4].isActive())
stl as[1].action(); as[4].action();
as[1].setlnactive(); as[4].setlnactive();
if (a>0) as[2].setActive();
as[3] .setActive(); oev. setActive();
el se return TRUE;
AS3act i on() as[2] .setActive(); el se
return TRUE; return FALSE;
el se
return FALSE;

Bool ean st 2()
for(c = 2; ¢ <= 3; c++)
if (cas[c].isActive())
as[c].action(); as[c].setlnactive();
as[4] . setActive();
return TRUE;

4' oev return FALSE;

Fig. 3. — Dedsion and Merge trandation

The super-transitions named stl1, st2 and st3 are highlighted. In st3, note the
adivation d the event named oev. This event will be adive in the next exeaution step
(84).

33 Trandation of Forksand Joins

A fork is a speda kind d transition with two or more output arcs or flows. In
programming languages terms it translates to the cncurrent exeaution d two, or
more, threads. The join concept is the symmetricd construction. It allows the
synchronisation d concurrent adivities. Forks and joins are dso super-transition and
their trandations resembles the one for dedsions and merges but with the significant
difference that al inpu;, or output, must be mnsidered together. Figure 4 presents a
trandation example.

ASlaction()

Bool ean st 1() Bool ean st 2()

if (cas[1].isActive()) if (cas[2].isActive()
as[1] .action(); AND
as[1] . setlnactive(); cas[3].isActive())
as[2] .setActive(); as[2] .action();

[AS as[3] .setActive(); as[3].action();

return TRUE; as[2] .setlnactive();

el se as[3] .setlnactive();
return FALSE; as[4] . setActive();

return TRUE;
el se

return FALSE;

Fig. 4. — Fork and Join trandlation

34 Trandation of Subactivities States

Eacdh subadivity state is trandated to an aggregation ketween the dasscontaining
the subadivity state and the dass containing the adivity diagram inside the
subactivity state. If an upper bound onresources isimportant, the aygregation shoud
be replacal by compasition. This will typicdly be the cae for some embedded
systems which can na alow or do nd even suppat, the unpredictability of dynamic
memory allocation.

4 Execution

The exeaution d the resulting code is made step by step. The event aqyuisition is
made outside the step exeaution. After a step exeadtion, the event aaquisition is
restarted.

The step exeaution starts by creaing a wpy o the event objeds which will be used
to determine which transitions (that depend onevents) are adive. It also creaes a
copy d the adion states that will be used duing the super-transition method
execution. These mpieswill be used at the end o the step to updite the event objeds
and the adion state objeds. In this way, and in the dsence of conflicts in the model,

a deterministic exeaution is guaranteed. After the aedion d the two copies, the
events vedor is procesed sequentially. For ead adive event the aciated transition
methods are exeauted. The transition methods only change the state of the system if
the significant input adion states are adive. This exeaution cen, in turn, update the
events date. In short:

start event handling step
let ce be a copy of the event vector
let cas be a copy of the action state object
for each event ev in ce
if evis active
for each transition t associated to the ev
execute t associated nethod
updat e event vector with ce
update action state object with cas
stop event handling step
As drealy presented in the previous sdions, the transitions asociated methods
succed if the input adion states are adive, and the guards evaluate to true, in the
copy d the adion states objeds. The adions date vedor is updated ead time a
transition method succeas.
The stepped exeaution and the buffering d the events gate, also enable the

handling d deferred and non @ferred events[1] in aunified way.

5 The Role of Activity Diagramsin User Interface Modelling

Statecharts and Petri Nets have dready been used to model the controller part of the
Model-View-Controller pattern [3][4] in graphicd user interfaces design [5][6][7].
Activity diagrams, as a particular case of state diagrams (which are derived from
Statecharts) and Petri Nets, can, naturally also be used. They present the significant
advantage of asimpler formalism.

Only the Controller part will be spedfied by the Activity Diagram model. The
controller inpus and ouputs are modelled by events. Transitions firing depend nd
only of theinput events but also onthe controller internal state, which is modelled by
the adion states. Transition guards depend, typicdly, on the Model and can even
modify it. Thisis becaise some system evolutions shoud oy occur if some external
adion was siccesqdul, for example a onredion to a remote machine. All events,
super-transitions and adion states (representing the system state) are part of an
adivity diagram correspondng to the high-level view of the cntroller model. This
system state is modelled by the state of the adion states which, as already mentioned,
can ad like precondtions for event acceptance

A trandation similar to the one here propased, but based ona simple dassof Petri
nets, was arealy applied to the modelling o an Operation Termina for a remote
telecontrol and telemeasurement station for industrial processcontrol [7]. The model
and respedive trandation were gplied na only to the model of the Graphicd User
Interface but aso to the handling d asynchronous events coming from the remote
station. The model using the simple dass of Petri nets was extremely useful in the
design and implementation phases. It alowed the building d a rigorous and easily

understandable design which was of grea help for the developers, al with very
different badkgrounds as regard to modelli ng toals.

The used Petri net classhad very similar cgpabiliti es to the ones presently off ered
by adivity diagrams. The only significant diff erence was in the Petri net cgpability of
multiple and simultaneous adivation d one adivity, which is aciieved by the
existence of multiple token in ore place The mde resulting from the net spedfication
of the cntroller was snocthly integrated with a C++ framework as well as the
development environment automaticaly generated code.

6 Conclusion

The paper presented a systematic, but simple and intuitive, way to trandate activity
diagrams to classdiagrams with exeautable wde. This trandation to oljed-oriented
code is $hown to be smple and dreda enough to alow its use even withou
automating toals, although these have obvious advantages. The interface of the
generated code enables an easy integration with cther code, even if automaticdly
generated by dher tods. This was arealy verified in the making d a telecntrol
application centred onthe Model-View-Controll er pattern.

In the very nea future we will formalise the mapping between adivity diagram
and classdiagrams, throughthe use of UML meta models, so asto avoid any pcssble
ambiguity and, soon after, we will start the development of atrandation tool between
both dagrams. We believe that the tod development will bring vital contributions to
the formali sation eff ort.

A send asped to be mnsidered in the trandation toadl development will be the
availability of reverse engineeing enabling the analysis of code and automatic
production o classdiagrams and adivity diagrams meta models.

Acknowledgement: The aithors thank the anonymous reviewer for constructive
remarks.

References

1.“OMG Unified Modeling Languege Spedficaion’, online, available & http://www.omg.org/cgi-
bin/doc?ad/99-06-08.ps, August 16, 200Q

2. Bruce Powel Doudass Doing Hard Time: Developing Red-Time Systems with UML, Objeds,
Frameworks and Patterns, Addison-Wesley, 1999

3. Dave Calli ns, Designing Object-Oriented User Interfaces, Benjamin/Cummings Publishing Company,
Inc., 1995

4. JohnHunt, “Constructing Moduar User Interfacesin Java”, Java Report, Vol. 2, No. 8, Sept.1997

5. InaHorroks, “ Constructing the User Interfacewith Statecharts’, Addison-Wesley, 1999

6. Rémi Bastide, Phili ppe Palanque, “A Petri Net Based Environment for the Design o Event-Driven
Interfaces’, in Application and Theory of Petri Nets' 95; Ledure Notes in Computer Science; vol. 935
Giorgio De Michelis, Michel Diazeds.); Springer, Berlin; pp 6683

7. Luis Gomes, Jodo Paulo Barros and Aniké Costa, "Detailed design o the INNOVA Station Operation
Termina"; Esprit 21017INNOVA projed internal report, EP21017023UNI, February 1998

