
From Activity Diagrams to Class Diagrams

João-Paulo Barros1, Luis Gomes2

1 Instituto Politécnico de Beja ,Escola Superior de Tecnologia e Gestão,
 Área Departamental de Engenharia 7800-050 Beja, Portugal, jpb@estig.ipbeja.pt

2 Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Department of
Electrical Engineering, 2825-114 Monte de Caparica, Portugal, lugo@uninova.pt

Abstract. A translation from activity diagrams to class diagrams, with executable
code, is presented. The translation is amenable to be made with or without
automating tools. An ill ustrative application example is also briefly presented:
Activity diagrams are used in the modelli ng and implementation of graphical user
interfaces, more precisely in the controller part of the Model-View-Controller
pattern.

1 Introduction

It is well know the diff iculty in maintaining consistency across different views of
the same system. The use of the Unified Modelli ng Language (UML), with their
multiple diagrams, can easily give origin to inconsistencies. The UML is more easily
perceived as a union of modelli ng languages than as unification. As most systems
revolve around the class diagram, its generation is usually given high priority.
Nevertheless, many times, and particularly in event driven systems, a behavioural
model is a much more easy and intuitive starting point. Among the behavioural
models, the activity diagram is usually not given much attention. This is unfair as the
activity diagram is actually very versatile and can be easily used by users with very
different backgrounds, namely in, procedural programming languages, flowcharts,
state machines, Petri nets and workflow systems. Note that this list includes almost all
kinds of designers with some previous experience in the modelli ng of dynamic
systems.

This paper presents an easily applicable translation of activity diagrams to class
diagrams. This can be applied to any kind of system. One case study is briefly
presented for modelli ng of the controller part of a Model-View-Controller pattern
through the use of an activity diagram.

2 Activity Diagrams

As stated in the UML specification [1], an activity diagram is a variation of a state
machine. Depending on the background of the user, an activity diagram can seem like
a flowchart, a Petri net or some kind of workflow modelli ng notation. It allows a very

readable modelli ng of concurrency and of all elementary programming concepts,
namely: sequence, branch, loop, fork and join [2].

Activity diagrams are usually associated to a class and, as such, they model the
operations flow inside the class. This flow can depend on internal or external events.
Nevertheless, the activity diagram also allows a hierarchical decomposition, through
the use of subactivity states [1], and so it can model several classes related by class
aggregation. Through the use of external events we can even synchronise several
activity diagrams.

3 Translation of Activity Diagrams to Class Diagrams

The proposed translation has the following objectives:
1. To be suff iciently simple so as to be routinely and consistently used, even

without supporting tools
2. To be suff iciently rigorous so as to amenable to automatic translation by

supporting tools
The emphasis on this paper is on the manual translation of activity diagrams to

class diagrams. The result of this translation process will be presented by the
description of the resulting class diagrams representation with an associated code
skeleton. The simplicity of the generated translation, namely its external interface,
allows an easy integration with code generated from other models by other methods.

Fig. 1.Proposed translation (a) and ultimate goal (b)

Figure 1(a) shows the referred process where UML meta models are implicitly
considered for the translation support (although not generated as they are not
amenable for manual editing). The ultimate goal of the present proposals is to support
the development of a software component, which will i mplement the proposed
translation process. This component, based on UML meta models, will be amenable
to be used inside a autonomous translation tool or integrated with a general purpose
UML based development tool. This is ill ustrated in Figure 1(b). In the next sections,
we present the translation details.

Activity
diagrams

Class diagrams with
embedded code

Code

Meta model

Meta model

Proposed translation

(b)

Translation
component

Activity
diagrams

Class diagrams with
embedded code

Code

Meta model

Meta model

General purpose UML Tool

(a) (b)

3.1 General Procedures

When translating activity diagrams to class diagrams each activity diagram will
map to one class in the class diagram. Activity diagram in subactivity states are
translated to aggregated classes. This is in accordance with the subactivity specified
semantics which states that single activity graph may be invoked by many subactivity
states. All activity diagram elements are translated to class elements in the following
way:

• Each event maps to an event object. Each event object has a state (active or
inactive), a list of associated transitions and a method that calls all the
associated transition methods. All event objects are made elements of an
event vector which is a class attribute.

• Each action state maps to an action state object. All action state objects are
made elements of an action state vector, which is a class attribute.

• Transitions, decisions, merges, forks and joins, map to class methods as
presented in the following sections.

• Subactivity states map to attributes. Each of these attributes belongs to a
class translated from the activity diagram associated to the subactivity state.

The action state objects have four methods and one state attribute: IsActive();
SetActive(); SetInactive(); Action(); state.

The first method is a Boolean function that returns the object state (active or
inactive). The second and third ones change the state of the object and the fourth one
executes the associated action specified in the action state.

Fig. 2 - Transition translation. One implicit event (a) and one explicitl y specified event (b),
between two action states give origin to the same transition method.

Each transition is mapped to a Boolean method that returns true if the transition
can fire and false otherwise (Figure 2). Here the term transition is considered in a
much more broader sense than in the activity diagrams specification, as all the set of
all arcs, control icons, decisions and merges between two or more action states are
considered part of a transition. In other words, all i nscriptions, arcs and nodes
between action states are considered part of the same transition and are translated to
only one method. We will call this broader concept of transition, super-transition so
as to distinguish it from the transitions in the activity diagrams definition [1].

As the transition method is called by the activating event (ev in Figure 2), the
transition can fire depending of its previous states as well as of eventual guards
(Figure 2). If input states to the super-transition are active the method does the
following: executes the action associated with the input action state (AS1action() in

AS1action() AS2action()st1

evb)

a)

Boolean st1()

 if (cas[1].isActive())

 as[1].action();

 as[1].setActive();

 as[2].setActive();

 return TRUE;

 else

 return FALSE;

AS1action() AS2action()

st1

Figure 2); inactivates the input actions states, activates the output action states;
returns true to signal success.

Note that the testing of the action states activation is made based on a copy of the
action states objects (as will be detailed in §4).

The translation of both super-transitions is the same. In case (a) the implicit event
calls the method, in case (b) the event ev calls the method. The implicit event is
always active so as to support this behaviour.

The name st1 is only for ill ustrative purposes as it is not part of the activity
diagrams, instead it is generated as part of the translation process.

The situation where an input event occurs but some or all associated transitions are
not enabled can have two disjoint interpretations: it is an exceptional but allowed
occurrence; it exposes a design error that should be detected during test or
verification phase. If that is the case, the action states activity or inactivity act like
pre-conditions that if not met will i mply a design error.

It is also interesting to consider the possibilit y of event methods with parameters,
which are passed to transition methods.

3.2 Translation of Decisions and Merges

As already stated, decisions and merges are considered part of super-transitions.
They typically have several possible inputs and/or outputs. The mapping follows the
same basic structure of the simple transitions and adds decision structures to support
the multiple possible flows. Figure 3 presents an ill ustrative example.

Fig. 3. – Decision and Merge translation

 The super-transitions named st1, st2 and st3 are highlighted. In st3, note the
activation of the event named oev. This event will be active in the next execution step
(§4).

st1

AS1action()

AS2action()

ev

AS3action()
a > 0

else

AS4action()

oev

st2

st3

Boolean st1()
 if (cas[1].isActive())
 as[1].action();
 as[1].setInactive();
 if (a > 0)
 as[3].setActive();
 else
 as[2].setActive();
 return TRUE;
 else
 return FALSE;

Boolean st3()
 if (cas[4].isActive())
 as[4].action();
 as[4].setInactive();
 as[2].setActive();
 oev.setActive();
 return TRUE;
 else
 return FALSE;

Boolean st2()
 for(c = 2; c <= 3; c++)
 if (cas[c].isActive())
 as[c].action(); as[c].setInactive();
 as[4].setActive();
 return TRUE;
 return FALSE;

3.3 Translation of Forks and Joins

A fork is a special kind of transition with two or more output arcs or flows. In
programming languages terms it translates to the concurrent execution of two, or
more, threads. The join concept is the symmetrical construction. It allows the
synchronisation of concurrent activities. Forks and joins are also super-transition and
their translations resembles the one for decisions and merges but with the significant
difference that all i nput, or output, must be considered together. Figure 4 presents a
translation example.

Fig. 4. – Fork and Join translation

3.4 Translation of Subactivities States

Each subactivity state is translated to an aggregation between the class containing
the subactivity state and the class containing the activity diagram inside the
subactivity state. If an upper bound on resources is important, the aggregation should
be replaced by composition. This will t ypically be the case for some embedded
systems which can not allow or do not even support, the unpredictabilit y of dynamic
memory allocation.

4 Execution

The execution of the resulting code is made step by step. The event acquisition is
made outside the step execution. After a step execution, the event acquisition is
restarted.

The step execution starts by creating a copy of the event objects which will be used
to determine which transitions (that depend on events) are active. It also creates a
copy of the action states that will be used during the super-transition method
execution. These copies will be used at the end of the step to update the event objects
and the action state objects. In this way, and in the absence of conflicts in the model,

AS1action()

AS2action() AS3action()

AS4action()

Boolean st1()
 if (cas[1].isActive())
 as[1].action();
 as[1].setInactive();
 as[2].setActive();
 as[3].setActive();
 return TRUE;
 else
 return FALSE;

Boolean st2()
 if (cas[2].isActive()
 AND
 cas[3].isActive())
 as[2].action();
 as[3].action();
 as[2].setInactive();
 as[3].setInactive();
 as[4].setActive();
 return TRUE;
 else
 return FALSE;

st2

st1

a deterministic execution is guaranteed. After the creation of the two copies, the
events vector is processed sequentially. For each active event the associated transition
methods are executed. The transition methods only change the state of the system if
the significant input action states are active. This execution can, in turn, update the
events state. In short:

start event handling step
let ce be a copy of the event vector
let cas be a copy of the action state object
for each event ev in ce
 if ev is active
 for each transition t associated to the ev
 execute t associated method
update event vector with ce
update action state object with cas
stop event handling step

As already presented in the previous sections, the transitions associated methods
succeed if the input action states are active, and the guards evaluate to true, in the
copy of the action states objects. The actions state vector is updated each time a
transition method succeeds.

The stepped execution and the buffering of the events state, also enable the
handling of deferred and non deferred events [1] in a unified way.

5 The Role of Activity Diagrams in User Interface Modelling

Statecharts and Petri Nets have already been used to model the controller part of the
Model-View-Controller pattern [3][4] in graphical user interfaces design [5][6][7].
Activity diagrams, as a particular case of state diagrams (which are derived from
Statecharts) and Petri Nets, can, naturally also be used. They present the significant
advantage of a simpler formalism.

Only the Controller part will be specified by the Activity Diagram model. The
controller inputs and outputs are modelled by events. Transitions firing depend not
only of the input events but also on the controller internal state, which is modelled by
the action states. Transition guards depend, typically, on the Model and can even
modify it. This is because some system evolutions should only occur if some external
action was successful, for example a connection to a remote machine. All events,
super-transitions and action states (representing the system state) are part of an
activity diagram corresponding to the high-level view of the controller model. This
system state is modelled by the state of the action states which, as already mentioned,
can act like preconditions for event acceptance.

 A translation similar to the one here proposed, but based on a simple class of Petri
nets, was already applied to the modelli ng of an Operation Terminal for a remote
telecontrol and telemeasurement station for industrial process control [7]. The model
and respective translation were applied not only to the model of the Graphical User
Interface, but also to the handling of asynchronous events coming from the remote
station. The model using the simple class of Petri nets was extremely useful in the
design and implementation phases. It allowed the building of a rigorous and easily

understandable design which was of great help for the developers, all with very
different backgrounds as regard to modelli ng tools.

The used Petri net class had very similar capabiliti es to the ones presently offered
by activity diagrams. The only significant difference was in the Petri net capabilit y of
multiple and simultaneous activation of one activity, which is achieved by the
existence of multiple token in one place. The code resulting from the net specification
of the controller was smoothly integrated with a C++ framework as well as the
development environment automatically generated code.

6 Conclusion

The paper presented a systematic, but simple and intuitive, way to translate activity
diagrams to class diagrams with executable code. This translation to object-oriented
code is shown to be simple and direct enough to allow its use even without
automating tools, although these have obvious advantages. The interface of the
generated code enables an easy integration with other code, even if automatically
generated by other tools. This was already verified in the making of a telecontrol
application centred on the Model-View-Controller pattern.

In the very near future we will formalise the mapping between activity diagram
and class diagrams, through the use of UML meta models, so as to avoid any possible
ambiguity and, soon after, we will start the development of a translation tool between
both diagrams. We believe that the tool development will bring vital contributions to
the formalisation effort.

A second aspect to be considered in the translation tool development will be the
availabilit y of reverse engineering enabling the analysis of code and automatic
production of class diagrams and activity diagrams meta models.

Acknowledgement: The authors thank the anonymous reviewer for constructive
remarks.

References

1.“OMG Unified Modeling Language Specification” , online, available at http://www.omg.org/cgi-
bin/doc?ad/99-06-08.ps, August 16, 2000.

2. Bruce Powel Douglass, Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Addison-Wesley, 1999.

3. Dave Colli ns, Designing Object-Oriented User Interfaces, Benjamin/Cummings Publishing Company,
Inc., 1995.

4. John Hunt, “Constructing Modular User Interfaces in Java”, Java Report, Vol. 2, No. 8, Sept.1997
5. Ina Horroks, “Constructing the User Interface with Statecharts” , Addison-Wesley, 1999.
6. Rémi Bastide, Phili ppe Palanque, “A Petri Net Based Environment for the Design of Event-Driven

Interfaces” , in Application and Theory of Petri Nets’95; Lecture Notes in Computer Science; vol. 935;
Giorgio De Michelis, Michel Diaz(eds.); Springer, Berlin; pp 66-83

7. Luis Gomes, João Paulo Barros and Anikó Costa, "Detailed design of the INNOVA Station Operation
Terminal"; Esprit 21017 INNOVA project internal report, EP21017/023/UNI, February 1998.

