On giving a behavioural semantics
to activity graphs

Christie Bolton and Jim Davies

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD

{christie, jdavies}@comlab.ox.ac.uk

We have been exploring how formal description techniques may be used to rea-
son about UML specifications; how descriptions of system behaviour, expressed
in terms of abstract data types and processes, may be constructed from indi-
vidual UML diagrams. Given these formal interpretations and the associated
behavioural and relational semantics we have shown how existing refinement
techniques may be applied to support the further development and analysis of
object models.

Our intention is not, however, to give a complete or formal semantics to the
whole of UML. Indeed, perhaps that is not an appropriate thing to do. Before
we embark on the formalisation process it is important to consider the role of
the various notations within the language.

The use of UML in software specification and design can be divided into
three, not necessarily distinct, phases:

1. Initial brainstorming period;
2. Development process;
3. Implementation-level specification.

Diagrams constructed in the first phase—for instance CRC cards and use case
diagrams—are a means of getting ideas flowing and opening up a dialogue be-
tween various members of the team. A formal semantics is less useful here.

The focus of our work has been on diagrams constructed during the devel-
opment process and in particular those, such as activity diagrams and sequence
diagrams, describing the behaviour of the system. We are concerned not only
with giving these notations a formal semantics but with how that semantics
may be used to support analysis and verify consistency.

We begin by outlining the work presented in [BD00a]. We present a formal
semantics for activity graphs, describing them in terms of the process language
CSP [Hoa85]. We go on to explain how this semantic interpretation may be used
to verify that the final class description of a system is consistent with the activity
graphs constructed in its development process. We end by identifying possible
extensions to the work.

Activity graphs

An activity graph is constructed from a combination of action states, (sub)activity
states, start and finish states and pseudostates merge, decision, fork and join.
We define:

Type ::= action {{ Action)) | activity {(ActivityLabel))
| start | finish | merge | decision | fork | join

where Action and ActivityLabel are given types. Each Action corresponds to a
method on the system and an ActivityLabel is the name of another graph within
the specification. We define the function Env which maps each activity label
onto its associated graph.

Env == ActivityLabel - Graph

Each state within an activity graph records the type of its contents, the set
of incoming lines it requires and the set of outgoing transitions it enables

State
lines : P Line
transitions : P Transition

type : Type

where a transition records the name of the line as well as any associated guard
or action.

Transition
guard : Guard
action : Action
line : Line

We impose well-formedness conditions on our states; for instance a start state
can have no incoming lines and the only states which can have self-transitions
are action states and (sub)activity states. A graph is built up from a finite set
of well-formed states.

Graph = states {{ F WellFormedState))

Semantic interpretation

The process corresponding to each state within an activity graph is essentially
the sequential composition of the process corresponding to its incoming lines,
the process corresponding to its type and the process corresponding to its outgo-
ing transitions. The resulting process is then interleaved with itself to facilitate

multiple (possibly synchronous) executions of the same state.!

StateP(state) ~ LinesInP(state) g (TypeP(state) 3 TransOutP (state)

|l
StateP (state))

The definitions of the processes corresponding to the incoming lines and outgoing
transitions, LinesInP and TransOutP respectively, depend on the type of the
state. For instance join states require all in-coming lines to be enabled whereas
all other states (with the exception of the start state which has no incoming
lines) require precisely one of their incoming lines to be enabled.

Similarly, the process corresponding to each type, TypeP, depends on the
type of the state; for (sub)activity states it is the process corresponding to the
associated graph, for action states it is the event corresponding to the given
action followed by successful termination and for all other states it is simply
successful termination.

The process corresponding to a graph is then the parallel composition of the
processes corresponding to each of its constituent states each synchronising on
its own alphabet, or set of associated events.

GraphP = || state : States e [alphabet(state)] StateProcess(state)

Our semantic function takes an activity label corresponding to a particular
graph and the environment function, Env, mapping activity labels onto their
associated graphs and returns the process which models the behaviour of the
given graph. This is the process obtained by hiding all the line events in the
process GraphP corresponding to the given graph.

Adequacy

We observed in Section 1 that in order to facilitate multiple, possibly syn-
chronous, executions of each state we must interleave the process StateP with
itself. However, the simplified definition we presented could diverge. To eliminate
the possibility of divergence we must, in Petri net terms, put an upper limit on
the number of tokens allowed in any place; that is, for each action state and
activity state we must only allow a finite number of events corresponding to an
incoming line to occur before an event corresponding to an outgoing transition
occurs.

We extend the definition of State to incorporate the variables isDynamic and
dynamicMultiplity as defined in the UML specification [OMG99]. The Boolean
isDynamic is True for action states and activity states in which the state’s
actions may be executed concurrently. If this Boolean is True then the integer

! This definition is a simplification for the brevity and clarity of the paper. We take
care to handle self-transitions separately; for more details see [BD00a]. To prevent
the process from diverging, we put bounds on the number of synchronous executions
of any given state; we discuss this further in Section 1.

dynamicMultiplicity limits the number of parallel executions of the actions of
the state. If the Boolean isDynamic is False then each execution of the state
may occur only if the last execution has been completed. Hence for practical
purposes we use the following process to model the behaviour of each state?

PracticalStateP(state) =~
if (isDynamic = False) then
let
PSP(state) = LinesInP(state) g TypeP (state) g
TransOutP (state) § PSP (state)
within
PSP(state)
else
StateP (state)
|[LinesIn(state) U LinesOut(state) ||
ConstraintP(state)

where the constraining process ConstraintP enforces the invariant:

0 < #InLineEvents — # OutLineEvents < dynamicMultiplicity

Analysis

In order to compare the final class description of a model with the activity
graphs constructed during the development process we first translate the final
class description to its corresponding process. This translation is based on results
presented in [FBLPS97] and a translation from abstract data types to processes
described in [BDW99] and is explained in greater detail in [BDOODb)].

Having translated all activity graphs—and indeed message sequence charts—
and the final class description to CSP processes, it is simply a question of refine-
ment to confirm that the final object model is consistent with its specification.
We use the model-checker FDR to perform this verification.

But the nature of the refinement check we do is not always immediately
obvious. For instance, consider the message sequence chart illustrated in Fig-
ure 1. Does this diagram mean that whenever methodA is called, method B must
be called and then methodC must be called? Or does it mean that whenever
methodA is called methodC' cannot be called before methodB has been called?
Or does it simply mean that methodA followed by methodB followed by methodC
is a possible sequence of interaction?

At present the information content of each diagram is conveyed (possibly
tacitly) by its context within the specification. But this information content
dictates the nature of the refinement check we make: do we use the traces model
which simply checks that the behaviour described in the diagram is a possible
sequence of interaction or do we perform our refinement check using the failures

2 Once more this is a slightly simplified version for brevity and clarity. For full details
see [BDO00a].

methodA () —
| methodB()

methodC() >

Fig. 1. A sequence diagram

model thereby checking availability information. Before we are in a position to
automate the process of verifying the consistency of object models we must settle
the issue of information the content of each of the diagrams.

Extensions

The semantic interpretation of activity graphs presented above contains the ma-
chinery for actions having guards, but at present these are non-variable guards.
We need to incorporate object flow states into our semantics and consider how
best to model systems with multiple threads in which more than one object is
able to change state variables.

It is necessary to model access to data components in activity graphs; in
an implementation objects may be locked, methods may be synchronised. It is
relatively easy to extend the CSP model to treat this. The issue that requires
clarification is the matter of event queues and event handling. As [BCRO0] say,
this is an area of the UML specification that remains somewhat opaque.

One of the strengths of UML—why we hope it should lead to a general
improvement in the quality of program design—is that it is increasingly being
adopted by software developers with no background in formal methods, those
who might otherwise skip the specification process and move directly to the
coding phase.

It is therefore crucial in giving a formal semantics to various parts of UML
that we consider the needs of these users. To expect them to have to learn to
use more traditional formal methods in order to verify the consistency of their
UML specification is defeating the object of the exercise.

Our long term objective would be for a modelling tool to automatically:

— Translate the final class description to its corresponding process;

Translate all behavioural descriptions to their corresponding processes;

— Use a model checker to verify consistency;

Give the user intelligible reports about where/if the specification is violated.

‘We hope that the suggested behavioural semantics for activity graphs presented
here is a step in the right direction.

References

[BCROO]

[BD00Oa]

[BDOOD)

[BDW99)

E. Borger, A. Cavarra, and E. Riccobene. An ASM semantics for UML
activity diagrams. In T. Rus, editor, Proceedings of AMAST’ 00, LNCS.
Springer, 2000.

C. Bolton and J. Davies. Activity graphs and process. In W. Grieskamp,
T. Santen, and W. Stoddart, editors, Proceedings of IFM 00, LNCS.
Springer, 2000. To appear.

C. Bolton and J. Davies. Using relational and behavioural semantics in the
verification of object models. In C. Talcott and S. Smith, editors, Proceed-
ings of FMOODS ’00. Kluwer Academic Publishers, 2000. To appear.

C. Bolton, J. Davies, and J. Woodcock. On the refinement and simulation
of data types and processes. In K. Araki, A. Galloway, and K. Taguchi,
editors, Proceedings of 1FM’99. Springer, 1999.

[FBLPS97] R. B.France, J.-M. Bruel, M. M. Larrondo-Petrie, and M. Shroff. Exploring

[Hoa85]
[OMG99]

the semantics of UML type structures with Z. In H. Bowman and J. Derrick,
editors, Proceedings of FMOODS ’97, volume 2. Chapman and Hall, 1997.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
Object Management Group. Unified Modeling Language Specification, ver-
sion 1.8. Rational Software Corporation, Santa Clara, CA 95051, USA,
June 1999.

