Towards a Rigorous Semantics of UML
Supporting its Multiview Approach*
Extended Abstract™™

Gianna Reggio, Maura Cerioli and Egidio Astesiano

DISI-Dipartimento di Informatica e Scienze dell’Informazione,
Universita di Genova, Via Dodecaneso, 35, 16146 Genova, Italy,
e-mail: {reggio,cerioli,astes}0@disi.unige.it

The task of providing a rigorous semantics of the UML, [9], is far from
trivial. Indeed, the UML notation is complex, including a lot of heterogeneous
notations for different aspects of a system, possibly described at different points
in the development process. Moreover, its informal description 1s incomplete and
ambiguous, not only because it uses the natural language, but also because the
UML has the so called semantics variation points, that are constructs having a
list of possible semantics, instead of just one.

A UML model consists of a bunch of diagrams of different kinds, expressing
properties on different aspects of a system. Thus a UML model plays the role
of an axiomatic specification, but in a more pragmatic context.

Another analogy that we can establish between UML models and specifi-
cations is the fact that the meaning of each diagram (kind) can be given in
isolation, as well as the semantics of each axiom, and its effect on the descrip-
tion of the overall system is to rule out some elements from the universe of all
possible systems (semantic models). Indeed, both in the case of a UML model
and of a collection of axioms, each individual part (one diagram or one axiom)
describes a point of view of the overall system.

Therefore, our understanding of the optimal form of a semantics for the UML
is illustrated in Fig. 1.

We have a box representing a UML model, collecting some diagrams of dif-
ferent kinds, and its overall semantics, represented by the arrow labelled by
SEM-UML, 1s a class of UML formal systems. But, each diagram in the model
has its own semantics (denoted by the indexed SEM), that is a class of appro-
priate structures, as well, and these structures are imposing constraints on the
overall UML formal systems, represented by lines labelled by the indexed =. A
sort of commutativity on the diagram has to hold, that is the overall semantics
must be the class of UML formal systems satisfying all the constraints imposed
by the individual semantics. Moreover, the formal semantics must be a rigor-

* This research has been partially supported by ESPRIT working group 29432 (CoF1
WGQ@) and by Programma di Ricerca Scientifica di Rilevante Interesse Nazionale Sal-
adin (Software Architectures and Languages to Coordinate Distributed Mobile Com-
ponents).

** This is the extended abstract of a paper presented at AMILP 2000, see [5].

modeller intuition f AUML systems)
N

intuitive
([UML model) correspondence

SEM 1 =
D1 s(M1) =1

SEM 2 —
D2 M2)—F2 [pumL forma systemS))

Dn SEM n M
& J

SEM-UML

Fig. 1.

ous representation of the expected “intuitive semantics”, described by the UML
standard, version 1.3 ([9], shortly written from now on UML 1.3).

Several attempts at formalizing the UML are currently under development,
but most of them are taking into account only a part of the UML, with no
provision for an integration of the individual diagram semantics toward a formal
semantics of the overall UML models; see the book [1], and the report [7] on a
recent workshop on the topic of the UML semantics also for more references.
The only exception known to us is the attempt at describing the semantics of
the UML within the UML itself (the meta-model approach) as advocated by
the pUML group, see the site http://www.cs.york.ac.uk/puml/. But even in
this case it is difficult to recognize the nature of the semantics of the individ-
ual diagrams, as the semantics is given as a sequence of translations into more
and more restricted core languages, that are subsets of the UML, and only the
smallest is directly given a semantics.

Our approach, accordingly with the previous discussion, is an attempt at
formalizing UML models as a whole, while simultaneously giving also a formal-
ization of each kind of diagram in an integrated way. Because of the need of
integrating the formalization of both the static and the dynamic part of UML,
we have found convenient to use an extension of the CasL basic language [8],
namely CASL-LTL [3], especially devised to model formally also the dynamic
behaviour of objects. In Fig. 2, we graphically summarize our proposal.

From a technical viewpoint, we proceed in two steps: first, we determine the
needed semantic structures (the M; and the UML formal systems in Fig. 2)
through an analysis of the document UML 1.3, and formally describe them.
Then, we translate the diagrams into CASL-LTL specifications (represented by
the downward arrows), whose formal semantics gives, by composition, the seman-
tics of each diagram in the UML model (represented by the dotted horizontal
arrows).

-
a
9 i
=
specl H
ec2
® CASL-LTL
specification

Fig. 2.

Moreover, in the lower part of the diagram, the CASL-LTL specifications
representing the individual diagrams are combined (in a non-trivial way) into
an overall specification, whose semantics is (has to be) compatible with the
constraints imposed by the individual diagrams and provides a semantics for the
overall UML model. This combination is graphically represented by a bullet.

We are currently working on filling the above schema, providing the semantic
structures and the translations of the various diagrams into CasrL-LTL. This
activity is performed as part of the CoFI ! initiative, within the CoFI-reactive
task group.

Roughly speaking, there are two aspects of a system that we are able to
describe using the UML: the structure of the system, that is which are the
components and which are their capabilities, and the activity of the system,
that is the evolution of its components along the time and the interactions of
the system with the external world (e.g., with the users). Since the handling of
the time in UML, also of the real time, does not require to consider systems
evolving in a continuous way, we have to describe a discrete sequence of moves,
each one of them representing one step of the system evolution.

Therefore, we will use generalized structured labelled transition systems (shortly
glts) as UML formal systems, representing the evolution steps as transitions.

! See the site http://www.brics.dk/Projects/CoFI.

Moreover, the labels of the transitions capture interactions with the external
world, and the structured states, as sources and targets of the transitions, provide
a formal counterpart to the system structure. The components of the structured
states corresponding to instances of active classes are in turn modelled by a (non-
structured) labelled transition system. Finally, the extra information, like the
current stimuli set, are represented, generalizing the standard notion of labelled
transition system.

For instance, let us consider a fragment of an invoice system. We have some
passive classes, recording information about clients, products (we do not detail
these parts), current (and past) orders and stock of an e-commerce firm, and
some active classes, managing the above described data and representing two
kinds of “software” clerks: the stock handler, who puts the newly arrived prod-
ucts in the stock and removes the correct amount of products to settle an order,
and the invoicer, who processes orders and sends invoices. Thus, in Fig. 3 we
graphically represent a transition of the corresponding UML system.

T Orders
Stock_Handler @ A

o
2
[m

(tb*td)po.d ppe-pols
(To'TO)e0I0AUIPUSS BRI\
(To'TO)R0IOAUIPUES” B N

W et Orders
Stock_Handler’ @ -

Fig. 3.

Both in the source and in the target state we have two active components
(represented by oval shapes) that are, respectively, the stock handler and the
invoicer and a number of passive components (represented by rectangles): some

instances of clients and products, the unique instance of stock and the state
of the associations orders and what, relating each order respectively to the
ordering client and to the ordered product. In this picture we consider the parallel
execution of two activities, graphically represented by the thin lines connecting
the involved active components of the source and target state:

— the stock_handler adds to the stock some quantity q1 of the product pi;
the effect of this action is to change the state both of the stock handler
and of the stock;

— the invoicer send to the client ¢1 an invoice for the order o1, by call-
ing a method of some external mailer; thus, the effect of this action is to
change the state of the invoicer and to communicate with the external
world through the label of the action;

The parallel composition of these actions is described by a transition, graphically
represented by the thick arrow connecting source and target structured states.
Notice that, since the labels of the structured system carry only information
about the interactions with the external world, the label of this transition is
taking into account only the call to the mailer. But the resulting state of the
system is modified because the internal states of all the objects involved in the
move are (possibly) modified. The kinds of diagram considered so far are

— the class diagrams, analyzed and translated into CasL (that is a subset of
CasL-LTL) in [2]. Each class diagram describes a data structure, having
sorts for each class, functions for getting the attribute values in a given
state, and predicates to represent both operations (in order to provide some
level of non-determinism needed for parallel executions) and associations.
Such information imposes requirements on a UML formal system requiring,
for instance, that the states of the system components are elements of the
sorts representing classes in the data structure, and that the sequences of
transitions corresponding to the execution of an operation connect states
that are also connected by the predicate representing that operation.

— the statechart diagrams, analyzed and translated into CasL-LTL in [4]. Each
statechart associated with an active class is modelled by a (non-structured)
labelled transition system. A UML formal system satisfies such a labelled
transition system lts if and only if the labelled transition system of the
component associated with the active class in the UML formal system 1s lts
itself.

— the sequence diagrams, currently under development in [6]. Each sequence
diagram is modelled by an event structure, where events are sets of UML
stimuli, that is, a partial order on sets of UML stimuli. A UML formal
system satisfies such an event structure if there 1s a chain in the partial
order that is a path in the transition tree.

Some other kinds of diagrams that we have partly analyzed, and, we conjecture,
can be added to our schema without major problems, are

— the collaboration diagrams, as they are rather similar to the sequence dia-
gram;

— the activity diagrams, as they are a specialization of the statechart diagrams.

Moreover, we still have to take into account the deployment diagrams, though we
do not foresee particular problems for their formalization within our framework,
while we are doubtful about the possibility of giving a formal semantics to the use
case diagrams, because they are, roughly speaking, too close to natural language
descriptions.

We translate diagram annotations as well, currently using the OCL con-
straints, but we are in some sense parametric w.r.t. such annotations, so that
we could easily substitute any other constraint language for OCL.

The mechanisms for self-extension provided by the UML, like stereotypes,
are still to be taken into account.

An extended version of the present paper has been published in the AMILP
2000 proceedings ([5]).

References

1. R. France and B. Rumpe, editors. jjUML;;’99 - The Unified Modelling Language.
Number 1723 in Lecture Notes in Conputer Science. Springer Verlag, 1999.

2. H. Hussmann, M. Cerioli, and H. Baumeister. From UML to CasL (Static
Part). Technical Report DISI-TR-00-08, DISI — Universita di Genova, Italy, 2000.
CASLUMLStaticl.psin ftp://ftp.disi.unige.it/person/CerioliM/.

3. G. Reggio, E. Astesiano, and C. Choppy. Cast-Lt, © A CasL Exten-
sion for Dynamic Reactive Systems — Summary. Technical Report DISI-
TR-99-34, DISI — Universita di Genova, ltaly, 1999. ReggioEtAl199a.ps in
ftp://ftp.disi.unige.it/person/ReggioG/.

4. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active
Classes and Associated State Machines — A Lightweight Formal Approach. In Proc.
FASE 2000 - Fundamental Approaches to Software FEngineering, number 1783 in
Lecture Notes in Computer Science. Springer Verlag, Berlin, 2000.

5. G. Reggio, M. Cerioli, and E. Astesiano. An Algebraic Semantics of UML Sup-
porting its Multiview Approach. In Proc. of 2nd AMAST workshop Algebraic
Methods in Language Processing (AMILP 2000), number 16 in Twente Work-
shop on Language Processing, Enschede, The Netherlands, 2000. Available at
ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtA1100a.ps.

6. G. Reggio and A. Mutti. Analysing UML Sequence Diagrams — A Lightweight
Formal Approach. Technical report, DISI — Universita di Genova, Italy, 2000. In
preparation.

7. S.Kent, A.Evans, and B. Rumpe. UML Semantics FAQ . In A. Moreira and S. De-
meyer, editors, ECOOP’99 Workshop Reader. Springer Verlag, Berlin, 1999.

8. The CoFI Task Group on Language Design. Formal Methods 99 - CASL, The
Common Algebraic Specification Language - Summary. Available on compact disc
published by Springer-Verlag, 1999.

9. UML Revision Task Force. OMG UML Specification, 1999. Available at
http://uml.shl.com.

