
Strengthening the Semantics
of UML Collaboration Diagrams?

Reiko Heckel and Stefan Sauer

University of Paderborn, Dept. of Mathematics and Computer Science
D-33095 Paderborn, Germany
reiko|sauer@uni-paderborn.de

Abstract. Collaboration diagrams are strengthened by interpreting col-
laborations as visual queries for specifying pre and postconditions of
operations. The conceptual idea is formalized by means of graph trans-
formation rules and graph processes. A proof-theoretic interpretation is
given which accounts for the composition of diagrams.

Keywords: collaboration diagrams, graph transformation, action semantics

1 Introduction and Motivating Example

A weakness of the UML is the lack of appropriate means for specifying the
semantics of operations [13]. Such specification should describe the pre- and
postconditions of operations, their effect on the current state, as well as the calls
or signals that are sent during their execution. A solution recently proposed
is the action specification language [1] (ASL) which allows a declarative style
of specification based, e.g., on SQL-like queries and a pre/post-conditions for
specifying operations.

However, given that the success of object-oriented modeling is largely due
to the use of diagrams, it may be questioned if the majority of UML users
can be motivated to learn yet another textual language. Moreover, we believe
that the weakness described in [13] is not so much due to lack of appropriate
diagrammatic notation, but due to the lack of precise semantics.

In this paper, we explore the possibility to specify the semantics of opera-
tions by means of UML collaboration diagrams. In a collaboration diagram, a
collaboration representing a pattern of objects and links provides the context of
an interaction describing the flow of messages. This integration of structure and
behavior provides the basis for specifying the semantics of operations.

As an example, consider the collaboration diagram in the top of Fig. 1 speci-
fying the implementation of operation processOrder. Collaboration diagrams with
simple (unnested) sequence numbers are sufficient for this purpose since each di-
agram corresponds to the body of one operation. In fact, diagrams of this kind
may be used for generating method implementations in Java [8], i.e., they can
be seen as visual representations of programs.
? Research partially supported by the ESPRIT Working Group APPLIGRAPH.

/c:Company /s:Store

/d:Delivery
 {new}

pNr = p
amount = a

/o:Order
{destroyed}

pNr = p
amount = a

store
delivery

processOrder (/o) 1:available(p,a)
2:deliver(/d)

/s:Store :Product

pNr = p
amount = b

product

available (p,a)

{b ≥ a}

:Company
processOrder(o) 3: s:= search(p,a)

:Store

:Store
s

��� local ���
5: deliver(d)

1: p:= getpNr()
2: a:= getAmount()

:Order
{destroyed}��� parameter ���

o

store

delivery
��� local ���:Delivery

{new}
4: delivery(o,s)

d

Fig. 1. An implementation-oriented collaboration diagram (top), its declarative pre-
sentation (bottom left), and a visual query operation (bottom right).

However, the semantic weakness of collaboration diagrams, in particular con-
cerning the collaboration part, limits their expressiveness. In fact, according to
the UML specification [12], the collaboration is just the context of the inter-
action. It does not entail any structural requirements beside the obvious one
that objects and links have to be present as soon as they are involved in an
interaction. This enforces a low-level style of specification as witnessed in the
example by the use of get functions for attributes and the modeling of queries
by multi-objects, composition, and search functions. We claim that, leaving out
implementation details, the same operation can be specified by the diagram in
the lower left of Fig. 1 where collaborations are seen as a visual query and update
language on object graphs. As a second example, in the lower right of the same
figure the specification of the predicate available is shown which succeeds if the
:Store object matching /s is connected to a :Product object with the required
product number p and an amount b greater than a.

In the following sections, we sketch how this strengthening of collaboration
diagrams can be formalized by means of graph transformation rules and graph
processes.

2 Collaborations as Graph Transformations

A collaboration on specification level is a graph of classifier roles and associa-
tion roles which specifies a particular view of the classes and associations of a
class diagram as well as a pattern for objects and links on the instance level.
Such a pattern can be used as a query by requiring the existence of a matching,
i.e., a structure-preserving mapping of classifier roles to objects, mathematically
described as a subgraph isomorphism. On this basis, an interpretation of collabo-
rations as query and update language for object structures can be given in terms

of rule-based graph transformations (see, e.g., [2] for an introductory text). In
fact, using the constraints {new} and {destroyed}, a collaboration can specify the
manipulation of object graphs. Thus, a collaboration on the specification level
represents a graph transformation rule while collaborations on the instance level
can be used to visualize individual transformations.

A graph transformation rule r = L → R consists of a pair of graphs L,R
such that the union L∪R is defined. (This ensures that, e.g., edges which appear
in both L and R are connected to the same vertices in both graphs.) Consider
the rule in Fig. 2 representing the collaboration of processOrder in the lower
left of Fig. 1. The precondition L contains all objects and links which have
to be present before the operation, i.e., all elements of the diagram except for
/d:Delivery which is marked as {new}. Analogously, the postcondition R contains
all elements except for /o:Order which is marked as {destroyed}. (Note that the
{transient} constraint does not (yet) occur because the graph transformation
specified by a rule is supposed to be atomic, i.e., there are no intermediate
states with additional objects.)

/c:Company

/s:Store

/d:Delivery

pNr = p
amount = a

/o:Order

pNr = p
amount = a

store

delivery

/c.processOrder (/o)

/c:Company

/s:Store
store

Fig. 2. Pre- and postcondition of operation processOrder.

Formally, a graph transformation G
r(o)
=⇒ H from a pre-state G to a post-state

H is given by a subgraph isomorphism o : L ∪ R → G ∪ H, called occurrence,
such that o(L) ⊆ G and o(R) ⊆ H (i.e., the precondition of the rule is matched
by the pre-state and the postcondition by the post-state), o(L \R) = G \H and
o(R\L) = H\G (i.e., all objects of G are {destroyed} that match classifier roles of
L not belonging to R and, symmetrically, all objects of H are {new} that match
classifier roles in R not belonging to L). Thus, a collaboration with constraints
{new} and {destroyed} allows the visual specification of pre- and postconditions
and effects on the current state.

Based on this interpretation of collaborations as graph transformation rules,
a visual programming language has been developed [9] using collaboration di-
agrams for expressing the semantics of operations. However, graph transfor-
mations as described above do not provide a concept of interaction. Rather, a
transformation step can be seen as an abstraction of a complex scenario to its
pre and post-state. Next, we shall elaborate on this concept by enriching it with
the history of the process that caused the state transformation.

3 Collaboration Diagrams as Graph Processes

An interaction represents the causality and concurrency between messages by
means of a partial order, called precedence relation [12]. To represent such a par-
tial order, a solution which is popular for its simplicity is to build all possible lin-
earizations, i.e., to model concurrency by non-determinism. If both concurrency
and non-determinism are of interest, this interleaving approach to interactions
(which is taken, e.g., in [14]) might be considered too abstract as it hides the
difference between the two concepts. (A situation where both concepts are im-
portant in their own right can be easily imagined because, first, many of today’s
software systems are concurrent and distributed, and second, non-determinism
is an important means of abstraction in a model where we may not want to
specify the full control flow of the implementation.) A semantics of interactions
based on partial orders is developed in [11].

The key to partial order semantics is to abstract, in an individual run, from
the ordering of operations which are not causally dependent, i.e., which appear
in this order only by accident or because of the strategy of a particular sched-
uler. In the theory of graph transformation, this abstraction is realized by the
construction of a graph process [5]. The graph process for the collaboration dia-
gram in the lower left of Fig. 1 is shown in Fig. 3. The graph of the collaboration
in the center provides the context for the rules above and below which model
the actions specified within the collaboration diagram: The two rules in the top
represent the two call actions where the auxiliary round vertex named 1 results
from the sequence number 1: of the call to available. It ensures that the second
operation is called only after the first is completed. The rules in the bottom
result from the destroy and create actions in the diagram.

/o ∅∅
∅∅

/d
pNr = p
amount =a

/c

/d

/c

/d
delivery

/s /s
/s.available (p,a)

1 /s

/d

/s

/d

1
/s.deliver(/d)

/c:Company /s:Store

/d:Delivery

pNr = p
amount = a
 {new}

/o:Order

pNr = p
amount = a
{destroyed}

store

delivery

Fig. 3. Graph process for the collaboration diagram of operation processOrder.

Beside the sequence numbers specifying the precedence relation, the causality
of actions is prescribed by the data dependencies, e.g., if an action creates an

object which is used by another one. This is precisely reflected in the process
where the causal order is determined by the overlapping of the occurrences of
the left- and right-hand sides of the rules in the graph of the collaboration. In
our example, both the creation of the delivery link and the invocation of deliver
depend on the creation of the object playing the role of /d. In addition, deliver
depends on the completion of available due to the vertex 1 which occurs both in
the left-hand side of deliver and in the right-hand side of available.

Graph processes have evolved as a generalization of processes of place-
transition Petri nets [15] with similar aims and results (see [3] for a survey).
In particular, the definition of graph process [5] entails that the causal relation
is acyclic and free of conflicts (in the sense that every object may only be created
and destroyed once) and that a rule can only be applied to an object after it is
created and before it is destroyed.

The model described so far allows to represent collaboration diagrams on
the specification level (as long as they do not contain control structures such
as conditionals or loops). In order to represent actual computations, a notion
of composition of diagrams is required which reflects, e.g., the invocation of
operation available from within processOrder. In the next section, we will sketch
how diagrams on the specification level can be used as graphical deduction rules
in order to derive diagrams on the instance level representing computations.

4 A Proof-Theoretic Interpretation

A collaboration diagram specifying an operation like processOrder in the bottom
of Fig. 1, expresses the following conditional statement. A situation matching
the precondition of the diagram (given by all classifier and association roles
not marked as {new}) can be transformed as specified by the postcondition
(given by all classifier and association roles not marked as {destroyed}) provided
that the call actions available and deliver can be performed. In order to stress
this interpretation, the collaboration diagram can be denoted as a graphical
deduction rule in the SOS style (cf. [4])

L1
/s.available(p,a)−→ R1, L2

/s.deliver(p,a)−→ R2

L
/c.processOrder(p,a)−→ R

where L1 → R1 and L2 → R2 are the two rules in the top of Fig. 3 and L→ R
is the rule in Fig. 2. An analogous presentation of the collaboration diagram
for available in Fig. 1 on the right leads to an axiom (a deduction rule without
premise).

L′
/s.available(p,a)−→ R′

A proof using such rules represents a computation, i.e., a collaboration dia-
gram on the instance level. The main operation for building such proofs corre-
sponds to the invocation of an operation. It matches, e.g., the first premise of the

rule for processOrder with the conclusion of the rule for available thus forming
the proof tree1

L′
/s.available(p,a)−→ R′, L2

/s.deliver(p,a)−→ R2

L′′
/c.processOrder(p,a)−→ R′′

The conclusion L′′
/c.processOrder(p,a)−→ R′′ is obtained from L

/c.processOrder(p,a)−→ R by
adding the new pre- and postconditions and effects induced by the subprocess

L′
/s.available(p,a)−→ R′. For the collaboration diagrams, this means to substitute the

call to available in the bottom left diagram of Fig. 1 by the collaboration diagram
in the bottom right of the same figure specifying the implementation of available.
The resulting diagram on the instance level is shown in Fig. 4.

co/c:Company st/s:Store

de/d:Delivery
 {new}

pNr = 13
amount = 28

or/o:Order
 {destroyed}

pNr = 13
amount = 28

store

delivery

processOrder(or)

1:available(13,28)
2:deliver(de)

pr:Product

pNr = 13
amount = 42

product

Fig. 4. Collaboration diagram on the instance level.

In this way, a calculus of collaboration diagrams can be built which allows to
combine simple specification level diagrams to bigger diagrams on the instance
level. By recording the structure of the proof in a proof tree like above, we are
able to represent collaboration diagrams with more than one level of method
invocation.

5 Conclusion

In this paper, we have proposed a strengthening of collaboration diagrams which
makes them suitable for the precise specification of operations. A formal inter-
pretation of this extended semantics in terms of graph transformation rules and
graph processes is provided which accounts for concurrency within interactions.
An interpretation of collaboration diagrams (or graph processes) as deduction
rules allows to model the invocation of operations as composition of rules. This
proof-theoretic interpretation provides a basis for implementation in a theorem
prover or logic programming system which is particularly important if collab-
oration diagrams are used for dynamic meta modeling [7] (which was, in fact,
the original motivation of this work) in order to test and verify the semantics
1 Since no specification for deliver is given, this branch of the proof tree remains unre-

solved.

specification. An alternative to a logic-based implementation is the translation
into an executable specification language like ASL [1] which could be defined
in analogy to the code generation from implementation-oriented collaboration
diagrams in Java [8].

Finally, note that our formalization can also be applied to “ordinary” collab-
oration diagrams which do not employ the collaboration pattern as a query. We
leave as future work the modeling of asynchronous communication and of more
elaborate control structures.

References

1. Action Semantics Consortium. Precise action semantics for the Unified Modelling
Language, August 2000. http://www.kc.com/as_site/.

2. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schürr, and G. Taentzer. Graph transformation for specification
and programming. Science of Computer Programming, 34:1–54, 1999.

3. P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Con-
current semantics of algebraic graph transformation. In Ehrig et al. [6], pages
107–188.

4. A. Corradini, R. Heckel, and U. Montanari. Graphical operational semantics.
In A. Corradini and R. Heckel, editors, Proc. ICALP2000 Workshop on Graph
Transformation and Visual Modelling Techniques, Geneva, Switzerland, July 2000.

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

6. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999.

7. G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In Proc. UML 2000, LNCS. Springer-Verlag, 2000. To appear.

8. G. Engels, R. Hücking, St. Sauer, and A. Wagner. UML collaboration diagrams
and their transformation to Java. In France and Rumpe [10], pages 473–488.

9. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In H. Ehrig, G. Engels, H.-
J. Kreowski, and G. Rozenberg, editors, Proc. TAGT’98, volume 1764 of LNCS.
Springer-Verlag, 2000.

10. R. France and B. Rumpe, editors. Proc. UML’99 – Beyond the Standard, volume
1723 of LNCS. Springer-Verlag, 1999.

11. A. Knapp. A formal semantics of UML interactions. In France and Rumpe [10],
pages 116–130.

12. OMG. UML specification version 1.3, June 1999. http://www.omg.org.
13. OMG. Action semantics for the UML - request for proposals, November 1998.

http://www.omg.org/pub/docs/ad/98-11-01.pdf.
14. G. Övergaard. A formal approach to collaborations in the unified modeling lan-

guage. In France and Rumpe [10], pages 99–115.
15. W. Reisig and U. Goltz. The nonsequential behaviour of Petri nets. Information

and Control, 57(2,3), 1983.

