Formal Validation of UML Statechart Diagrams
Models

Stefania Gnesi! and Diego Latella*?, Istvan Majzik3, and Mieke Massink**2

! Consiglio Nazionale delle Ricerche
Istituto IEI, Pisa, IT
gnesiQiei.pi.cnr.it

2 Consiglio Nazionale delle Ricerche

Istituto CNUCE, Pisa, IT
d.latella@cnuce.cnr.it, m.massink@cnuce.cnr.it
3 Technical University of Budapest
Dept. of Measurement and Information Systems, Budapest, H

majzik@mit.bme.hu

1 Introduction

In this paper we focus on UML Statechart Diagrams (UMLSDs), which are meant
for describing dynamic aspects of system behaviour. In particular, we give an
overview of our work on an integrated framework and tools environment for the
formal validation of UMLSDs and the automatic analysis of some quantitative
attributes of theirs. Most of the work presented here is ongoing research which
is taking place in CNR, Pisa in cooperation with the University of Budapest.
Our overall goal is to provide an environment for formal verification via model-
checking and quantitative analysis also via simulation of a behavioural subset
of UMLSDs. Our position is that verification as well as quantitative assessment
tools and environments must be characterised by High Quality Assurance stan-
dards both for their definition and for their implementation. This allows us to
safely rely on the verification and validation results they produce. The method-
ology we follow for achieving this goal and assuring high standards is based on
the use of (a) formal definition of the syntax and semantics of the notation sub-
set as well as of (b) rigorous and, whenever convenient, formal proofs concerning
features of the notation and correctness of the implementations. This in turn im-
plies rigorous and, whenever applicable and tractable, formal specification of the
software tools included in the environment. Consequently a central role is played
by the definition of a formal operational semantics for the notation. The work
described in the present paper is based on the operational semantics we proposed
in [16]. Such a semantical model is defined for a restricted subset of UMLSDs,
still including all the interesting conceptual issues related to concurrency in the
dynamic behaviour, like sequentialisation, non-determinism and parallelism. It

* Contact author. Phone: +39 050593230. Fax: +39 050904052
** Supported by the TACIT network under the European Union TMR Programme,
Contract ERB FMRX CT97 0133.

also covers state refinement and inter-level transitions. More specifically, we do
not consider history, action and activity states; we restrict events to signal and
call events, without parameters (actually we do not interpret events at all); time
and change events, object creation and destruction events and deferred events are
not considered as are branch transitions; also variables and data are not allowed
so that actions are required to be just (collections of) events. We also abstract
from entry and exit actions of states. The above restrictions are made essen-
tially for simplicity since, in our opinion, most of them do not have any strong
impact on the behavioural aspects of the semantics and tools at a conceptual
level, but dealing with them would dramatically and uselessly complicate the
notation involved. Other limitations, namely the fact that we do not deal with
the object-oriented features of UMLSDs, e.g. sub-behaviours, are more serious.
Basic formal semantics models and related tools, even for a restricted language,
are an essential step for any further extension with the above mentioned fea-
tures. The definition of a sound “basic” subset or kernel of a notation, on which
to stress novel semantics concepts as well as develop mathematical theories, like
behavioural preorders or equivalences, and experiments with specific tools, like
model-checkers, has already proven a valuable, safe and fruitful methodology
and is now quite standard practice in many fields of concurrency theory, like
process-algebra. Once concepts, theories and tools have been developed for a
restricted notation their extension to other, important, features of the notation
can be supported by a safer background. For instance, it is our opinion that a
sound formal semantics for UMLSDs is a necessary condition for extending the
considered notation with the inclusion of object-oriented features like classes and
subclasses. In fact the formal semantics serves as a necessary starting point for
the definition of behavioural (ordering) relations which can play a role in the
definition of the notion of sub-behaviour, connected to the notion of sub-classes
[4]. Finally, we want our environment to be open: its user should be allowed to
use different notations (UML, PROMELA, Automata, Process Algebra, Tempo-
ral Logics, etc.) since we think it is unlikely that one single notation can cover
all aspects of interest of the design of a system, with current technology.

2 A Formal Approach to UMLSD Behavioural Semantics

All the work we are performing is based on the formal operational semantics
we defined in [16], which uses a UML variant of Hierarchical Automata (HAs)
[20] as abstract syntax. The semantics definition is composed by a top-level rule
which makes use of the so called “core-semantics”. The core-semantics is defined
by a deduction system composed of only three rules. The definition is recursive,
based on the hierarchical structure of HAs. We refer the interested reader to
[16] for all technical details on syntax and semantics. Here we want to point out
that our definition of the semantics is parametric w.r.t. the priority schema for
transitions as well as the selection policy of the dispatcher. Moreover, in [14] our
semantics has been proven correct w.r.t. the requirements informally stated in
the UML official definition documents.

2.1 Extensions

Multicharts The general idea of the UML designers is to associate a distinct
statechart to each class or object and then let such statecharts communicate via
queues. Although we are not fully convinced of the methodological soundness
of such an approach, as discussed in detail in [15], our semantics can easily
be extended for coping with system descriptions consisting of more than one
statechart diagram. All what is needed is to change the top-rule and to properly
address messages to different HAs - every HA being equipped with its own input
queue. See [10] for formal definitions and details.

Real-time and Stochastic UML Statechart Diagrams In [12] a stochas-
tically timed extension of UMLSDs has been proposed. The extension is rather
simple both from a notational point of view and from a semantics point of view.
In particular, following the Stochastic Automata approach of D’Argenio [7, 8],
we enrich UMLSDs with random (descending) clocks which can be set when
states are entered and which can be used as guards for transitions: a transition
can fire only when all clocks guarding it reach zero. Consequently we enrich
HAs and their operational semantics accordingly. The semantics of Stochastic
UMLSDs are Stochastic Automata. The operational semantics definition has
been extended in order to deal with random clocks. The extension is techni-
cally simple and allows to use powerful analysis techniques. Furthermore, it is
orthogonal in the sense that the automaton of the basic, untimed, operational
semantics is the same as that of the stochastic semantics, once clocks and clock
settings are removed. Orthogonality can be proven by derivation induction [12].

2.2 Verification and Assessment

Linear Time Model-checking of UMLSDs In [15] a linear time model-
checking facility for UMLSDs has been presented. The target language is PRO-
MELA, the specification language of the SPIN model checker. SPIN [13] is one of
the most advanced analysis and verification tools available nowadays. The trans-
lation is derived from the operational semantics. It is simple, proven correct, and
promising in terms of state space representation efficiency. Two implementations
of the translation exist [9, 2]. Several experiments, including a specification and
verification by means of model checking of the Production Cell, have been per-
formed on the implementation described in [2]. The interested reader is referred
to [18].

Branching Time Model-checking of UMLSDs In [11] a branching time
model-checking approach to the automatic verification of formal correctness of
UMLSD specifications. The approach is based on the operational semantics and
the implementation of the state enumeration algorithm is under way. Our refer-
ence verification environment is JACK [3], where automata are represented in a

standard format, which facilitates the use of different tools for automatic veri-
fication. We are not aware of other proposals of branching time model-checking
for UMLSDs. The benefits of branching time logics have been widely recognised
in the literature and it is also well known that linear time and branching time
logics are incomparable as far as the expressive power is concerned [6].

Stochastic Analysis We discussed above a stochastic extension of UMLSD and
their semantics. By means of the rules of the operational semantics, a stochastic
automaton can be generated automatically from a Stochastic UMLSD model, us-
ing essentially the same enumeration algorithm as that mentioned in the previous
section. Once such a stochastic automaton is generated, analysis of quantitative
features of its behaviour can be performed directly on it. To that purpose one
can use discrete simulation tools available for stochastic process algebras [7, 8]
when non-markovian processes are involved, which is the majority of cases due
to the synchronous nature of the STEP relation. In the case the stochastic au-
tomaton is markovian then other tools like markovian model-checkers [1] or more
traditional tools can be used. We want to stress here that the orthogonality theo-
rem sets a formal link between the functional behaviour of a (enriched) UMLSD
model of a system and the quantitative analysis one performs on it. Such a link
contributes in increasing confidence on the results of such an analysis. In certain
cases, the model for quantitative analysis needs to be more abstract than the
functional one. Our approach allows us to unambiguously define what we mean
by “more abstract”. This can be done my means of proper behavioural relations
on automata, thus preserving the formal link between functional models and
quantitative ones. The issue of behavioural relations will be briefly discussed
below.

3 Behavioural Relations

In [4] a study on behavioural relations and their relationship with subtyping
is presented. It is argued that failure relations (e.g. preorders), among others,
play a significant role in the study of subtyping. In [10] some preliminary ideas
are presented on which we are working currently for the definition of a testing
theory and related behavioural relations for UMLSDs. We believe that such a
theory can provide a sound framework for investigating the relation between
sub-classes and their associated behaviours expressed by UMLSDs as well as
for formal derivation of test cases. As for other extensions/manipulation we
discussed above, also in the case of testing we only need to properly rearrange the
top-level rule of the operational semantics, once again leaving the core-semantics
unchanged. In the operational semantics of UMLSDs given in [16] a status is a
pair containing also the current environment. In the testing framework, instead,
we let statuses coincide with configurations and the current environment be
modelled separately by the “experimenter”. The transition relation of a HAs is
now labelled by input/output pairs (e,E). The input component ’e’ represents
the stimulus for the STEP transition to fire while the output component 'E’ is a

collection of events which the hierarchical automaton returns to the environment
as (part of) the reaction to the stimulus. We use the notion of Output Respecting
Experimenters [19] in order to take care of the peculiar input/output interaction
pattern of UMLSDs as opposed to synchronisation in process algebras [Hen88].
We define a proper notion of Experimental System which we use for proving the
correctness of the new semantics w.r.t. that given in [16] as well as for developing
the standard notions of testing theory - Computations, Successful Computations,
Testing Equivalence, Testing Preorders.

4 Conclusions and Related Work

In this paper we presented our approach to the definition of a framework and
environment for verification and analysis of UMLSDs and their timed exten-
sions. We think that the overall design process of such an environment must be
driven by formal semantics and rigorous and, whenever possible and convenient,
formal derivation of tools from the semantics. Several approaches have been
proposed in the literature for the definition of a formal semantics of UMLSDs,
e.g. [22, 5, 16, 17], and much more has been done for classical statecharts. To
the best of our knowledge, transition priorities are dealt with neither in [22],
where also state refinement is not allowed, nor in [5], where model checking is
addressed. Both transition priorities and state refinement constitute main is-
sues in our work. The approach we followed is similar to that proposed in [20]
for classical statecharts but it takes into consideration the peculiarities of the
UMLSDs relevant for the considered subset of the notation. On the other hand,
it shares the relative simplicity of the work proposed in [20]. In [17] all inter-
esting aspects of UMLSDs semantics are covered. Unfortunately, no correctness
result for the proposed semantics is provided. More emphasis is put on imple-
mentation related issues as the work constitutes a basis for a PROMELA /SPIN
based model-checker for UMLSDs. In [17] a ‘flat’ representation of UMLSDs is
used and the authors claim that such a representation is better suited for model-
checking purposes than the hierarchical one used in [16]. We definitely do not
share this opinion: using a hierarchical representation for UMLSDs (syntax),
not only has no negative impact on tools development, but, rather, it helps very
much in carrying on correctness proofs; all interesting results in our work are
proven inductively and such proofs heavily exploit the hierarchical structure of
our representation, which is also the basis of the structure of our semantics de-
duction system. In designing the UMLSDs to PROMELA translation we followed
an approach similar to that of Mikk et al. [21]. Nevertheless, our work differs
substantially from theirs. First of all, in [Mi+97] classical statecharts are consid-
ered instead of UMLSDs. So, the complications induced by the UML transition
priorities and their reverse relation with the hierarchical structure of the stat-
echart are not present therein, whereas they are dealt with in our work. More
specifically, we use a notion of ’priority schema’, on which the semantics are
‘parametric’, and then we instantiate it with the UML specific one. Moreover,
since the UML definition of the external environment is only partially defined,

our semantics definition as well as our translation are parametric w.r.t. the envi-
ronment. In the above mentioned work of Mikk et al., the environment is instead
represented as a set, as required by the classical statechart semantics. Moreover,
due to some simple optimisations, the code generated by our translator is con-
siderably simpler than that of the translation proposed in [21]. Also, we do not
need to use pre- and post-variables, so that the code generated by our translator
does not suffer from the memory duplication problem which in the above men-
tioned work requires specific optimisation techniques. Finally, we are not aware
of any correctness result for the work presented in [21].

5 Acknowledgements

The work presented in the present paper has been partially funded by the ES-
PRIT Project n. 27439 - HIDE. Istvan Majzik has been partially supported by
the Hungarian Scientific Research Fund OTKA-F030553. Mieke Massink has
been supported by the TACIT network under the European Union TMR Pro-
gramme, Contract ERB FMRX CT97 0133.

References

[1] C. Baier, J. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time markov chains. In J. Baeten and S. Mauw, editors, Concur
’99, volume 1664 of Lecture Notes in Computer Science, pages 146-162. Springer-
Verlag, 1999.

[2] A. Borschet, M. Dal Cin, J. Javorszky, and C. Szasz. Specification of the HIDE
environment. Technical Report HIDE/D3/TUB/1/v2, ESPRIT Project n. 27439
- High-Level Integrated Design Environment for Dependability HIDE, 1998.

[3] A. Bouali, S. Gnesi, and S. Larosa. The integration project for the jack environ-
ment. Bulletin of the EATCS, (54):207-223, 1994.

[4] H. Bowman and J. Derrik. A junction between state based and behavioural
based specifications. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, IFIP
TC6/WG6.1 Third International Conference on Formal Methods for Open Object-
Oriented Distributed Systems. Kluwer Academic Publishers, 1999. ISBN 0-7923-
8429-6.

[6] J. Broersen and R. Wieringa. Interpreting UML-statecharts in a modal p-calculus.
Unpublished manuscript, 1997.

[6] E. Clarke and I. Draghicescu. Expressibility results for linear time and branching
time logics. In J. de Bakker, C. de Roever, and G. Rozenberg, editors, Lin-
ear Time, Branching Tima and Partial Order in Logics and Models for Concur-
rency. REX School/Workshop, volume 354 of Lecture Notes in Computer Science.
Springer-Verlag, 1989.

[7] P. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, University of Twente, 1999.

[8] P. D’Argenio, J. Katoen, and E. Brinksma. Specification and analysis of soft real-
time systems: Quantity and quality. In Real-Time Systems Symposium, pages
104-114. IEEE - The Institute of Electrical and Electronic Engineers, 1999.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]

[22]

E. Giusti and D. Latella. Implementazione in SML di un traduttore da au-
tomi gerarchici a PROMELA. Technical Report CNUCE-B4-1998-018, Consiglio
Nazionale delle Ricerche, Istituto CNUCE, 1998. In italian.

S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. Amendola, and P. Marmo. Formal
specification and validation of a critical system in presence of byzantine errors. In
S. Graf and M. Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1785 of Lecture Notes in Computer Science,
pages 535-549. Springer-Verlag, 2000.

S. Gnesi, D. Latella, and M. Massink. Model checking UML statechart diagrams
using JACK. In A. Williams, editor, Fourth IEEE International High-Assurance
Systems Engineering Symposium, pages 46-55. IEEE Computer Society Press,
1999. ISBN 0-7695-0418-3.

S. Guesi, D. Latella, and M. Massink. A stochastic extension of a behavioural sub-
set of UML statechart diagrams. In V. Winter, editor, Fifth IEEE International
High-Assurance Systems Engineering Symposium, 2000. (To Appear).

G Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-295, 1997.

D. Latella, I. Majzik, and M. Massink. A simplified formal operational
semantics for a subset of UML statechart diagrams. Technical Report
HIDE/T1.2/PDCC/5/v1, ESPRIT Project n. 27439 - High-Level Integrated De-
sign Environment for Dependability HIDE, 1998.

D. Latella, I. Majzik, and M. Massink. Automatic verification of UML statechart
diagrams using the SPIN model-checker. Technical Report CNUCE-B4-1999-008,
Consiglio Nazionale delle Ricerche, Istituto CNUCE, 1999.

D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics
of UML statechart diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri,
editors, IFIP TC6/WG6.1 Third International Conference on Formal Methods
for Open Object-Oriented Distributed Systems, pages 331-347. Kluwer Academic
Publishers, 1999. ISBN 0-7923-8429-6.

J. Lilius and I. Paltor Porres. The semantics of UML state machines. Technical
Report 273, Turku Centre for Computer Science, 1999.

I. Majzik and J. Javorszky. Formal verification of UML statecharts: Case stud-
ies. Technical Report MITUB-TR-99-05, Dept. of Measurement and Information
Systems - Technical University of Budapest, 1999.

M. Massink. Functional Techniques in Concurrency. PhD thesis, University of
Nijmegen, February 1996. ISBN 90-9008940-3.

E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In R. Shyamasundar and K. Euda, editors, Third Asian Computing Science
Conference. Advances in Computing Sience - ASIAN’97, volume 1345 of Lecture
Notes in Computer Science, pages 181-196. Springer-Verlag, 1997.

E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann. Implementing Statecharts
in Promela/SPIN. Technical Report BL011272-971203-25TM, Bell Labs, Lucent
Technologies, 1997.

R. Wieringa and J. Broersen. A minimal transition system semantics for
lightweight class and behavior diagrams. In M. Broy, D. Coleman, T. Maibaum,
and B. Rumpe, editors, Proceedings of the ICSE98 Workshop on Precise Seman-
tics for Software Modeling techniques, 1998.

