A Semantic Model for the State Machine in the Unified
Modeling Language

Kevin Compton', James Huggins®, and Wuwei Shen'*

! EECS Department, University of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109-2122 USA
kjc, wwshen@eecs.umich.edu
2 Computer Science Program, Kettering University
1700 W. Third Avenue, Flint, MI 48504-4898 USA
jhuggins@kettering.edu

1 Introduction

The Unified Modeling Language (UML) is becoming a standardized modeling notation for
expressing object-oriented models and designs. UML is based on an intuitive and easy to
understand diagrammatic notation. Since its birth, a lot of CASE tools for UML have been
generated; but the specification of the language is “semi-formal”, i.e. parts of it are specified
with well-defined language while other parts have been described informally in English.

It is commonly admitted that a language should have a formal semantics to be unam-
biguous. Furthermore, the semantics must be precise if tools are to verify some properties on
a model expressed in this language. A lot of methods have been presented to represent the
semantics for the state machine in UML. Here we are looking for a method which can not
only represent the semantics for the state machine but also execute and verify the semantic
model.

There has been other work on verification tool for UML. The tool vUML [8], developed
in Abo Akademi University in Finland, is used to verify a UML model by using the model
checker SPIN. vUML translates the UML model into the SPIN input language PROMELA
and then verifies the UML model. But the SPIN input language PROMELA is not a formal
language which can be applied to give a semantic model. Therefore vUML deploys structural
operation semantics to give the semantic model. This seems to us that vUML separates the
verification model and semantic model. Fortunately Abstract State Machines can avoid this
separation by unifying them into one model.

2 Abstract State Machine

Abstract State Machines (abbreviated as ASM) [1] were first presented by Prof. Y. Gurevich
ten years ago. Since then, they have been successfully used in specifying and verifying a lot
of software systems. For example, they have been used to give a semantic model for several
different styles of programming languages, like C [7] etc.. We can use an ASM interpretor to
execute these semantic model [2]. Additionally, Abstract State Machines are used to specify

* Partially supported by NSF grant CCR 95-04375.

and verify a lot of software application (e.g. [3]). As the first step of an ongoing project, we
present an Abstract State Machine Model for the UML state machine in this paper.
An ASM program consists of the rules of the following forms:!

1. Update Rule: f(3) := ¢ is a rule with function f. Here 3 is a tuple (s1,-. ., s,) of terms.
The meaning of this rule is that the value of the function f at the value of the tuple
(s1,-.-,8n) is set to the value of ¢.

2. Conditional Rule: If g is a boolean term and R; and R, are rules then if g then R; else
R> endif is a rule. The meaning of this rule is that if the value of g is true then R; is
fired; otherwise R» is fired.

3. Block: If Ry and R, are rules then do in-parallel R; R> enddo is a rule with component
R; and R». R; and R are fired simultaneously if they are mutually consistent; otherwise
do nothing. In a general ASM program like what we will give the rules in the following,
we always omit the keyword do in-parallel and enddo .

In order to model a composite state in the UML state machine, we use a set of agents,
each executing a set of ASM rules. To distinguish itself from the other agents, an agent a can
interpret Self as a. More details about the distributed ASMs can be found in [6].

3 An ASM Model

Now we outline the idea about how to give an ASM model for a UML state machine diagram.
The UML state machine we consider is based on [10]. All ASM rules given are general purpose.
More details about this can be found in [5]. Because the interrupt caused by an event implicitly
affects some nodes in the UML state machine, we extend it to an extended UML state machine
diagram. In an extended UML state machine diagram, when an event occurs we just need to
consider how to interrupt the activity associated with a node affected by that event; and we
don’t need to think about the other nodes. After obtaining an extended UML state machine
diagram, we give a set of transition rules for all kinds of states in the extended UML state
machine diagram. Next we consider how to derive an extended UML state machine diagram.

First we consider those transitions outgoing from a node. 2 In a UML state machine if an
event associated with a transition occurs, then not only is the source node of that transition
affected but those nodes, which are either subnodes of that transition’s source node or the
ones including the transition’s source node, are affected as well. To explicitly denote these
nodes affected by that transition, we add a transition for every affected node which is a
source node of the new generated transition. In Figures 1 and 2 readers find how these new
transitions are added.

On the other hand, we also add some transitions in an extended UML state machine dia-
gram for those transitions coming into a composite node. The purpose for this is to explicitly
give the target node for every transition coming into a composite node.

! In fact, an ASM program can be defined in a more liberal way. Some structures introduced like
let rules make ASM program more easy to write and read and they can be translated to the basic
rules.

% Strictly speaking, state and transition are used in a UML state machine. And node and arc are used
in an extended UML state machine diagram. But sometimes we use these names interchangeably.

))

(a) UML state machine diagram (b) extended UML state machine diagram

Fig. 1. An arc is generated in (b) according to the arc tr in (a).

o /e

D1 D1
(@ UML state machine diagram (b) extended UML state machine diagram

Fig. 2. Some arcs are generated in (b) according to the arc ¢r in (a).

If a transition enters a concurrent composite node and does not explicitly terminates on
some of its regions, then we add some new transitions on these implicit regions, which is

shown in Figure 3.
— o
) e

@ (b)

Fig. 3. (a) shows an transition in a state machine diagram terminating on a substate within a
concurrent composite state. (b) shows a new arc is generated in the other region.

Having derived an extended UML state machine diagram, we consider how to give a
dynamic model for a state machine in UML. To model a dynamic execution of a state machine
in UML, two special function CurArc and CurNode are defined to denote the current active
transition and node. The current node refers to a node whose actions are being executed. And
the incoming transition is called an active transition.

Here we illustrate a simple node as an example to show that an ASM model for a UML
state machine is correct. More details about an ASM model for a UML state machine can be
found in [10]. The execution for a state is divided into three steps, one of which executes the
entry actions, internal actions and exit actions respectively. If the guard condition associated
with the current arc CurArc is true, the node is a leaf node and the node’s phase is init,
then the entry action associated with the node is executed and at the same time, the node
enters the phase internal_exe. The macro ISREACHABLE is used to check whether the guard
condition associated with the current arc Cur Arcis true or not. The macro EXE_ENTRY_ACTION
is used to execute the entry actions. The ASM for this phase is shown in Fig 4. In order to
save space we use let structure to represent that all appearances of node are replaced by
targetstate (CurArc) in the ASM specification.

let node =targetstate(CurArc) in
if ISREACHABLE(node,CurArc)=true and IsSimple(node)=true and
Phase(node)=init then
EXE_ENTRY_ACTION(node);
CurNode(Self) := node;
Phase = internal_exe;
endif
endlet

Fig. 4. The initial phase for a simple state.

When an agent’s control reaches a node and the node’s phase is internal_eze, the internal
actions and activity associated with the node are executed; and this is denoted by macro
CREATE_ACT. The ASM model for this phase is shown in Fig 5.

let node = targetstate(CurArc) in
if ISREACHABLE(CurArc(Self))=true and IsSimple(node)=true
and Phase = internal_eze then
CREATE_ACT(node);
Phase(node) := wait_for_exit;
endif
endlet

Fig. 5. The internal phase for a simple state.

If a simple node is in state wait_for_exit and an arc, which results in a normal exit from
the current node, is eligible to fire, the agent will execute the exit actions and entry actions
along the arc. If there is more than one completion arc which is eligible to fire, a function
ChooseArc returns a highest priority arc, that is about to execute. The macro ELIGIBLE2EXE
is used to denote whether a completion event is eligible to fire or not. The following are the
definitions for the function ChooseArc and macro ELIGIBLE2EXE.

ELIGIBLE2EXE (arc)=
IsTriggerless(arc)=true and HasGenEvent(arc)=true and guard(arc)=true

ChooseArc(node)= k iff
ELIGIBLE2EXE(outArcy (node))=true and
(V i: ELIGIBLE2EXE(outArc; (node))=true =
HighPriority(our Arcy, (node),our Arc; (node))=true)

Fig. 6. The definitions for function ChooseArc and macro ELIGIBLE2EXE.

In order to execute the exit actions along the arc, we need to set some functions and the
phase for the agent is also set to arc. All these actions are defined in the macro EXIT_FROM_NODE.
And function CurNode is set to undef in that the agent is about to leave from that node.
The ASM model for the last phase is shown in Fig 7.

The other interesting rule related to the UML state machine is how to implement the
transition from one state into anther state. There are two ways to exit from one state into
another: completion event and interruption event. If one of them is eligible to fire, then an
agent needs to stop all the activities being executed and start executing all exit actions in
the nodes from which the arc comes.

If a node, whose exit action is to be executed next, is a concurrent node, then we need to
distinguish two cases. One is the execution for the exit action caused by an event belonging

let node = targetstate(CurArc) in
if ISREACHABLE(node,CurArc) and IsSimple(node)=true and Phase = waiting_for_exit then
let j=ChooseArc(node) in
if (j I= undef) then
CurNode(Self) := undef;
EXIT_FROM_NODE(outArc;,node);
endif
endlet
endif
endlet

Fig. 7. The last Phase for a simple state.

to that concurrent node and that concurrent node’s exit action is to be first executed during
the (abnormal) exit. The other is the execution for the exit action caused by the pass from
its immediate subnode.

If the first case occurs, the agent needs to wait for all its child agents’ executions of their
exit actions to finish. If all the child agents finish their exit executions, then the agent kills all
of its child agents (if they exist) and executes the action defined in EXE_EXIT_OUTWARDS.
If the second case occurs, the agent stops the execution for exit action and waits for its parent
agent to kill itself. When an agent finishes the execution for all the exit actions associated
with an arc, we set function CurMode back to node, meaning a target node of the arc is a
candidate to be executed in the next. The ASM specification is shown in Fig 8.

4 Conclusion

In this paper we outlined the ASM model for a UML state machine diagram. ASM specification
uses simple syntax and its specification can be executed and verified as well.

References

1. Abstract State Machine Homepage: http://www.eecs.umich.edu/gasm.

2. Matthias Anlauff, XASM- An Extensible, Component-Based Abstract State Machines Language,
Proceeding of Abstract State Machine Workshop, 2000.

3. Egon Borger. Why Use Evolving Algebras for Hardware and Software Engineering?”, in M. Bar-
tosek, J. Staudek, J. Wiedermann, eds., SOFSEM ’95: Theory and Practice of Informatics, Springer
Lecture Notes in Computer Science 1012, 1995, 236-271.

4. Egon Borger, A. Cavarra, and E. Riccobene. ” An ASM Semantics for UML Activity Diagrams”, in
Teodor Rus, ed., Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, May 20-27, 2000, Proceedings, Springer LNCS 1816, 2000,
293-308.

5. K. Compton, Y. Gurevich, J. Huggins, W. Shen. An Automatic Verification Tool for UML, Tech-
nical report, CSE-TR-423-00, University of Michigan, 2000.

6. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E.Borger, editor, Specification and Vali-
dation Methods, pages 9-36. Oxford University Press, 1995.

if CurMode(Self)=interrupt or CurMode(Self)=arc then
if (head(NestStructure(Self)=undef) then
CurMode(Self):= node;
Action2ASM(action(CurArc(Self));
else
if (IsCompConcur(head(NestStructure(Self)))!=true) then
EXE EXIT_OUTWARDS(NestStructure(Self));
else
if CurNode!=head(NestStructure(Self)) then
NestStructure(Self):=undef; # deals with the second case
Mod(Agent2Act(Self,head(NestStructure(Self))):=undef;
CurMode(Self):=suspended;
else # deal with the first case
if Va € ChildAgent(Self): CurMode(a)=suspended then
EXE_EXIT_-OUTWARDS(NestStructure(Self));
Ve € ChildAgent(Self): KILL(c);
endif
endif
endif
endif
endif

Fig. 8. The model for executing an arc.

7. James K. Huggins and Wuwei Shen, “The Static and Dynamic Semantics of C: Preliminary Ver-
sion”, Technical Report CPSC-1999-1, Computer Science Program, Kettering University, February
1999.

8. Johan Lilius and Ivn Porres Paltor, vUML: a Tool for Verifyng UML Models, TUCS Technical
Report No. 272, May 1999.

9. J. Lilius, I. P. Paltor. Formalizing UML state machines for model checking, TUCS Technical
Report No. 273, June 1999.

10. Rational Software Corporation, Unified Modeling Language (UML), version 1.3,
http://www.rational.com, 1999.

