Some questions concerning
Interactions and StateMachines

Harald Storrle

Ludwig-Maximilians-Universitdt Miinchen
stoerrle@informatik.uni-muenchen.de

Abstract. In this paper, three questions concerning the semantics of
dynamic UML are raised:
1. T Collaborations are to be runs of StateMachines, how can they be
related?
2. If there is an ensemble of collaborating entities, each of which has a
StateMachine defining its behavior, how do they communicate?
3. If ActionSequence is an Action, it should be atomic, but what does
that mean in relation to RTC-steps?
While these questions have been discussed now and again among re-
searchers, there seems to be no publication at all raising them, much
less provide an answer. The recent ” Action Semantics” avoids these is-
sues except one interesting point: in stark contrast to the rest of UML,
it seems to commit itself to a true concurrency semantics. We do not
answer these questions either (of course), but hint at some ways out. A
more complete answer is given in [3].

1 Motivation and approach

One of the core principles of the UML is the idea of multiple views on a system.
However, inconsistencies may arise among overlapping (sets of) views. But rather
than being just a nuisance, such inconsistencies allow to detect differences in
points of view among developers. To be practical, however, one needs automated
tool support to discover such inconsistencies, and thus formal semantics for the
viewpoints one is interested in, particularly for the dynamic models.

Such a semantics should be based on the UML metamodel, rather than on
the concrete syntax, i.e. the notations. We use Petri-nets as the semantic domain
as (1) they provide true concurrency semantics and (2) allow to express both
systems an their runs in the same formalism. See [3] for more details. However,
this is immaterial to the present paper. Pursuing this approach, certain intriguing
questions concerning the UML metamodel arise.

2 Intuitive semantics

The UML currently offers four different notations for representing dynamic mod-
els, and two groups of metaclasses these notations are mapped to. Sequence and



collaboration diagrams both map to Collaborations!, state transition diagrams?

map to StateMachine, and activity diagrams map to ActivityGraph, which is a sub-
class of StateMachine.

A StateMachine is a set of Transitions and a tree of StateVertexes, the root
of which must be a State and is called top. Transitions correspond to arcs of
the concrete syntax (1) of state transition diagrams. The intuitive concept of a
transition is captured by the informal notion of ”compound transition”.

The operational semantics of StateMachine is defined by three separate enti-
ties: the state transition diagram proper, a context, and an event queue. The
event queue is used to buffer Events that may be used as triggers, and that stores
Events that are generated as effects (i.e. by an Action). The current state of the
StateMachine is called state configuration. These three are interpreted together by
the so called run-to-completion (RTC) semantics, which says "that an event can
only be dequeued and dispatched if the processing of the previous current event
is fully completed” (cf. [1, p. 2-149]). Semantically, this is called the interleaving
assumption, and it means that executing a StateMachine always results in linear
traces - not in partially ordered sets of Actions (or rather, their denotations).
One can think of it as the definition of some sort of abstract machine: ”/[.../ the
semantics are described in terms [...] of a hypothetical machine that implements
the state machine specification.” (cf. [1, p. 2-143]), see Figure 1.

State Transition Diagram

winc()

[w.size()>5]

Event Queue \1/ Context

run-to-completion

Il =—= operational semantics

T

Fig. 1. The semantics of StateMachine (see [1, p. 2-143ff]).

A Collaboration owns (1) a context which is a collection of ClassifierRoles repre-
senting the static aspect of the Collaboration, and (2) a set of Interactions as the

1 As a convention, we use sans-serif font for all UML metaclasses.

2 The UML uses the term state chart diagram. However, this is a proper name for
Harel’s notation, and there are substantial differences to them, so we prefer to use
the more traditional ad generic term state transition diagram.



dynamic aspect. Each of the Interactions represents an individual run. Without
loss of generality, we will assume in this paper, that each Collaboration has exactly
one Interaction. An Interaction consists of a set of Messages, that is partially or-
dered by the predecessors of the Messages. A Message also has activators, which will
be ignored here. Virtue to the partial ordering of Messages, interaction diagrams
are capable of expressing runs of truly concurrent systems.

3 Interactions as runs

One of the most important applications of interaction diagrams is the speci-
fication of sample runs of a system. If the complete behavior of such a sys-
tem is described by a state transition diagram, one may want to ask whether a
given interaction diagram really presents a sample run of a given state transition
diagram. To answer such a question, the abstract syntax (i.e. the metamodel-
structures representing these diagrams) must be translated to appropriate formal
domains, that allow the formalization of the notion ”is a run of”.

Consider the following example (see Figure 2). A system is composed of two
active Classes A and B (left, top), each with a StateMachine (going by the same
name) describing their behavior (left, bottom). The interaction diagram (middle)
might be a sample run of the system (in this example, it actually is). We assume
for the time being, that the overall behavior of the system may be described by a
StateMachine that has the StateMachines of its constituents as concurrent regions
(right).

A ‘B A System
A E {y ] x/{ )y 3 yl{ )Ix

Fig. 2. A system composed of two active Classes with their StateMachines (left), an
Interaction (middle), and a StateMachine representing what one would expect intuitively
to be the behavior of the overall system (right).

When interpreting an Interaction as a run of a StateMachine, there has to be
some relationship between them. In Figure 2, we glossed over this problem by
using the same symbols as trigger, effect, and action, i.e. as Event and Action. But
the Transitions of a StateMachine have Events as triggers and Actions as effects, while



Interactions exchange Messages between roles, and Message only has an Action and
no Event. So, triggers have no general correlation in Message. Only for one special
case it is possible to relate Action and Event, see Figure 3.3

Message

action effect trigger
Action Event

SendAction 9" Sjignal[$9" | SignalEvent |

Fig. 3. The relationships between the metaclasses Event, Action, and Signal in the UML
metamodel.

By exchanging Signals, Interactions and StateMachines can be related satisfac-
torily, but this only works for SendAction and SignalEvents. All other Actions and
Events that may occur in either of the diagrams must be rendered invisible in a
formal semantics, i.e. they must be hidden. Otherwise, many pairs of Interaction
and StateMachines would not match, although they should, intuitively. This in-
terpretation makes also sense when seen from another angle: Events that are not
the result of an Action (a TimeEvent, say), must be generated outside the context
as there is no sender for them within the system.

Among all the other orphan issues in UML, this one is particularly painful,
as it disables us from providing effective, standard-compliant tool support for
many kinds of Action and Event.

4 Concurrent StateMachines

So far, we have considered only individual StateMachines (the StateMachine Sys-
tem in Figure 2, right). But what happens if two systems run concurrently, each
of which is described by its own StateMachine (Figure 2, left)? Each and every
StateMachine has its own abstract machine, with its own event queue, its own
event processor, executing its own RTC-steps — concurrently, without synchro-
nization. Events are generated and consumed concurrently by the two StateMa-
chines.

3 There are interpretations about other correlations via Stimulus, too, but such spec-
ulations are not supported by the current version of the standard.



While the context may be shared by a common, enclosing NameSpace, this is
not the case for event queues. Thus, we speak of an event space that encapsulates
each StateMachine, individually. Such a concept is missing in the UML. It is not
clear, how two such event spaces might communicate, and thus, it is not clear,
how two StateMachines might communicate. In other words, it is not true that
the system of Figure 2 (right) represents the behavior of our example system.

So, if a semantics is to be able to represent systems with several collaborating
StateMachines, is has to be a true concurrency semantics. Obviously, we actually
do want to describe true concurrency in systems, particularly at the architecture
level. It is not clear how this can be accommodated in the current UML semantics
for StateMachines, which seems so entirely devoted to interleaving semantics.

5 An ActionSequence is an Action

Intuitively, the denotation of an ActionSequence should be the same as that of the
respective sequence of Actions: suppose, that Actions are translated into elements
of an alphabet X'. One would expect that ActionSequence is mapped to an element
from X*. Assuming that a and b are ”simple” Actions with denotations a and b,
and that c is an ActionSequence with a;b as its action, then both the sequence of a
and b, and c should be semantically identical. Put another way, one would expect
a certain correspondence between the semantic and the syntactic concatenation
operators, namely [c] = [a;b] = [a];[b]. Then, for instance, the StateMachines
X and Y of Figure 4 would not be distinguishable semantically.

Ay [y A

traces- of(X||Z) {abc, cab} versus traces_of (Y||Z) = {abc, cad, acb}

Fig. 4. Let £ denote the set of all terminal linear traces.

The UML standard demands the opposite however: the action of an ActionSe-
quence is a "sequence of Actions performed sequentially as an atomic unit” (cf. [1,
p. 2-87]). So, when composing the StateMachines X and Y with Z, the resulting
systems have different sets of linear traces — i.e. they are distinguishable, even
with the weakest possible behavioral semantics. Using X* as the domain for Ac-
tions does not solve the problem as (X*)* = X*. Simply dropping the atomicity
constraint for ActionSequence does not solve it either, but rather lead to a conflict
with the interleaving assumption underlying the RTC-semantics of StateMachines.



6 Conclusion

6.1 Related work

The subjects raised in this paper have been discussed by various people infor-
mally for some time. However, there are no publications that we know of which
actually pose these questions (such as papers on the previous UML conferences).
The standard itself all but skirts the issues raised. There are some comments on
Stimulus, but they are as yet not conclusive.

The recent response to OMG RFP ad/98-11-01 (aka. the Action semantics
proposal) deals only with Actions, but leaves out all their applications: “we have
delayed showing how the actions proposed in this submission are used in collab-
orations.” (cf. [2, p. 12]), "the definition of the semantics of state machine is
outside the scope of the action semantics” (cf. [2, p. 9]). At least, it does commit
itself to a true concurrency semantics for StateMachine (called ”relativistic time”
there) and distributed state, which is of course absolutely in line with our own
observations and proposals, and is a considerable improvement over the previous
state of utter undefinedness (see [2, p. 8-9].

6.2 Discussion

Intuitively, interaction diagrams can be interpreted as runs of state transition
diagrams. To formalize such a situation, we need semantics for Interaction and
StateMachine, the metaclasses representing these diagrams. StateMachines and In-
teractions may be related only by the Signals of SendAction and SignalEvent. All
other Actions and Events have to be hidden in a semantics.

The semantics of StateMachine is defined as an individual abstract machine
for each StateMachine. The standard does not specify, how two StateMachines may
interact. We use the notion of (disjoint) event spaces to capture this phenomenon.
The interleaving assumption underlying the RTC-semantics described in the
standard is unrealistic, particularly for distributed systems.

The only decent way out seems to be to drop the restrictive RTC-semantics
in favor of a formally coherent semantics based on true concurrency, as it seems
to be advocated in [2]. A step towards such a semantics is presented in the
forthcoming PhD thesis of the author, see [3].

Acknowledgements Thanks go to Alexander Knapp for stimulating dis-
cussions on Stimulus, and to an anonymous referee for suggesting improvements.

References

1. OMG. OMG Unified Modeling Language Specification (version 1.3). Technical
report, Object Management Group, 1998. Available at uml.shl.com.

2. OMG. Response to OMG RFP ad/98-11-01: Action Semantics for the UML, August
2000. Available at http://cgi.omg.org/cgi-bin/doc?ad/00-08-03.

3. Harald Stérrle. Models of Software Architecture. Design and Analysis with UML
and Petri-nets. PhD thesis, Ludwig-Maximilians-Universitdt Miinchen, Institut fiir
Informatik, November 2000. to be published.



