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1. Introduction

Let A be a bounded linear operator from a Hilbert space H into a Hilbert space G
and consider the inverse problem associated with

Af = g, (1.1)

that is, the problem of finding f ∈ H given the datum g ∈ G and the model
A : H → G. Usually the above problem is ill-posed [1,2,3] and we can only look for
the minimal norm solution of the least-squares problem

min
f∈H

‖Af − g‖G , (1.2)

which is called the generalized solution f†. In general g and A are known up to noise,
‖gδ1 − g‖H ≤ δ1 and ‖Aδ2 −A‖L(H) ≤ δ2, and f† does not depend continuously on
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g and A, so that a regularization procedure is needed to find a stable solution. For
example, Tikhonov regularization replaces problem (1.2) with

min
f∈H

(
‖Aδ2f − gδ1‖

2
G + λ ‖f‖2

H

)
. (1.3)

The solution of the above problem is now stable with respect to perturbations due
to noise [30].

In practice to solve numerically problem (1.3) a suitable discretization is con-
sidered and problem (1.1) is replaced with

Bf = h B : H → Z, (1.4)

where Z is a finite dimensional subspace of G, B is a bounded linear operator and
h is an element of Z. Examples of discretization procedures are degenerate kernel
methods, quadrature methods and projection methods (for a review see [3,4,5,2,
6] and references therein). For these methods the convergence of the regularized
solution of the discretized problem to the generalized solution of problem (1.1) is
controlled by δ1, δ2 and the dimension of Z.

In this paper, we develop a framework to deal simultaneously with the pertur-
bation due both to the noise and to the discretization. To this end we directly
compare problem (1.1) and problem (1.4) where Z is not necessarily a subspace of
G. Following [7,8], we study

Bδf = gδ

regarding the datum gδ as a perturbation of the exact datum g and the operator
Bδ as a perturbation of the exact model A. The critical point in our setting is to
give a measure of the discrepancy between gδ and g, and between Bδ and A, since
in general they belong to different spaces. We suggest that the perturbation can
be controlled by ‖B∗

δ gδ −A∗g‖H ≤ δ1 and ‖B∗
δ Bδ −A∗A‖L(H) ≤ δ2, δ = (δ1, δ2).

This can be seen, for example, observing that the Tikhonov regularized solution of
Bδf = gδ is

fλ
δ = (B∗

δ Bδ + λ)−1B∗
δ gδ,

so that fλ
δ depends on B∗

δ Bδ, which is an operator from H to H, and on B∗
δ gδ, which

is an element of H. We note that the output space Z disappears. We stress that in
our approach δ1 and δ2 take care of both the noise and the discretization. Our setting
appears natural while considering the problem of learning from examples where
one has to deal with the stochastic discretization of a linear inverse problem [34].
Nonetheless, we can equally deal with the deterministic discretization of integral
equations [6].

The paper is organized as follows. In Section 2 we discuss the main example we
have in mind, i.e. learning from examples. In particular we recall a recently proposed
formalization of learning as an inverse problem. In Section 3 we develop the general
setting and give the main results. In Section 4 we specialize to linear problems
induced by a Carleman operator giving an unifying framework for both integral
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equations and approximation problems in reproducing kernel Hilbert spaces. In
particular we provide an estimate of the perturbation δ in two different settings.
In Section 4.2 the discrete data are deterministically given. As a simple example
we consider the problem of computing the derivative of a function g when a finite
set of samples yi = g(xi) is given. In Section 4.3 we come back to learning theory
considering the discrete data as random variables and obtaining a probabilistic
bound on the discrete regularized solution.

2. An Inverse Problem Perspective on Learning Theory

In order to motivate the need to extend the discretization procedure usually consid-
ered in the theory of inverse problems to the scheme discussed in the introduction,
we give a brief account of the theory of learning from examples. For sake of clarity
we consider only the regularized least-squares algorithm in the regression setting
with quadratic loss function.

The theory of learning from examples was developed in the last two decades as
a mathematical model for learning in brain and cognitive science (for an account
of learning theory and its applications see [9,10,11,12] and references therein). As
noticed by many authors, the theory is strongly related with function approxima-
tion [13,14] and nonparametric regression [15]. It was recently shown [34] that the
problem of learning can also be reformulated as an inverse problem. In this section,
we review this connection.

The following ingredients define the mathematical setting of learning theory
where we focus on the regularized least-squares algorithm, see [13,19,20,17] and
references therein.

• The sample space Z = X×Y where the input space X is a closed subset
of Rd and the output space Y is a bounded subset of R.

• The probability distribution ρ(x, y) = ρ(y|x)ρX(x) on the sample space
Z. The measure ρ is fixed but unknown. We denote by L2(X, ρX) the
Hilbert space of functions f : X → R, which are square integrable with
respect to ρX and by ‖f‖ρ the corresponding norm.

• The regression function

fρ(x) =
∫

Y

y dρ(x, y)

(the integral is finite and fρ is in L2(X, ρX) since Y is bounded).
• The hypothesis space H, which is a (separable) reproducing kernel

Hilbert space [21] with a measurable kernel K : X × X → R bounded
by

K(x, x) ≤ κ2. (2.1)

• The training sets z = {(x1, y1), · · · , (xn, yn)} ∈ Zn where the n examples
(xi, yi) ∈ Z are drawn i.i.d. according to ρ (that is, Zn is endowed with
the probability distribution ρn).
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• The regularized least-squares algorithm. Given n ∈ N, for all training
sets z ∈ Zn, the estimator fz,n is defined as

fz,n = argminf∈H

(
1
n

n∑
i=1

(f(xi)− yi)2 + λz,n ‖f‖2
H

)
.

where λz,n > 0 is the regularization parameter depending on n and z.

We recall [21] that the elements of H are functions f : X → R such that

f(x) = 〈f,Kx〉H x ∈ X, f ∈ H, (2.2)

where Kx ∈ H is the function Kx(t) = K(t, x). Moreover, since the above functional
is coercive and strictly convex the solution fz,n exists and is unique [22]. Clearly fz,n

is a random variable on Zn taking values in H. One of the goals of learning theory
is the study of the generalization properties of the algorithm when the number
n of examples increases. Working with the squared loss, this amounts to give a
probabilistic upper bound on

Pz∼ρn

[
‖fz,n − fρ‖2

ρ ≥ inf
f∈H

‖f − fρ‖2
ρ + ε

]
for all ε > 0 [11,15,17].

We now rewrite the above problem in the framework given in the introduction,
for a wider discussion see [34].
If IK : H → L2(X, ρX) is the inclusion operator, which is continuous by (2.1), the
least-squares problem associated with the linear problem

IKf = fρ (2.3)

is

inf
f∈H

‖IKf − fρ‖2
ρ = inf

f∈H
‖f − fρ‖2

ρ ,

so that the problem of finding the best estimator in H is equivalent to solving
problem (2.3) in the least-squares sense. In particular, the generalized solution f†

exists if and only if Pfρ ∈ H where P is the projection onto the closure of H
in L2(X, ρX) (in learning theory f† is usually denoted by fH [10].) Moreover, the
definition of projection P gives

‖f − fρ‖2
ρ − inf

f∈H
‖f − fρ‖2

ρ = ‖IKf − Pfρ‖2
ρ (2.4)

for all f ∈ H, which is the square of the residual of f in the framework of inverse
problems [2].
Finally, if z = (x,y) with x = (x1, . . . , xn) and y = (y1, . . . , yn), let Sx,n : H → Rn

be the sampling operator [23,17]

(Sx,nf)i = f(xi) = 〈f,Kxi
〉H i = 1, . . . , n.
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where ‖·‖n is 1/n times the euclidean norm in Rn. Then

1
n

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2
H = ‖Sx,nf − y‖2

n + λ ‖f‖2
H ,

and the estimator fz,n is the Tikhonov regularization of the linear inverse problem

Sx,nf = y (2.5)

with the choice λ = λz,n.
The problem of learning can be seen as the problem of solving the exact prob-

lem (2.3) (in the least-squares sense) when a discretized problem Sx,nf = y is
randomly given. As suggested in the introduction, the convergence of the regular-
ized solution of the discretized problem can be controlled by∥∥I∗KIK − S∗x,nSx,n

∥∥
L(H)

≤ δ1 ‖I∗Kfρ − Sx,ny‖H ≤ δ2.

Clearly, since both Sx,n and y are random variables, the above bounds are to be
considered in a probabilistic sense. As a consequence of the theory we develop in
the following section, we will prove in Section 4.3 that, for a suitable a priori choice
of the parameter λ = λn,

Pz∼ρn

[
‖fz,n − Pfρ‖2

ρ > inf
f∈H

‖f − fρ‖2
ρ + (Cε + R)2n−

r
r+1

]
≤ 2

(
e−C1ε2 + e−C1ε2

)
where 0 < r ≤ 1 and C, C1, C2, R are constants.

We end the section, observing that, the basic goal of learning is to control
‖IKfz,n − Pfρ‖2

ρ, which is the square of the residual of the solution. However,
if f† = fH exists, it is also of interest [17] to bound the reconstruction error
‖fz,n − fH‖H, which is standard both in inverse problems and in approximation
theory. In the following we treat both errors.

3. Error estimates for Tikhonov regularization

In this section, first we describe and briefly discuss the general setting, then we
state and prove the main results of the paper.

3.1. General Setting

First of all we set the notation. If H and G are Hilbert spaces, we denote by L(H,G)
the Banach space of bounded linear operators from H into G endowed with the
uniform norm ‖·‖L(H,G). If A ∈ L(H,G) we denote by A∗ the adjoint operator.

We consider the two linear problems

Af = g A : H → G (3.1)

and

Bδf = gδ Bδ : H → Z (3.2)
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where H, G, Z are Hilbert spaces, and A, Bδ are bounded operators. We will think
of problem (3.2) as a discretization of problem (3.1), meaning that we regard Bδ and
gδ as approximations of A and g, respectively. Henceforth we assume that M > 0
and δ = (δ1, δ2) ∈ R2

+ exist such that

‖gδ‖Z ≤ M

‖B∗
δ gδ −A∗g‖H ≤ δ1

‖B∗
δ Bδ −A∗A‖L(H) ≤ δ2. (3.3)

The constant M is regarded as a fixed a priori normalization of the norm in Z,
whereas the parameter δ = (δ1, δ2) gives a quantitative measure of the perturbation
introduced by replacing the problem (3.1) with (3.2) and we are interested to the
convergence of the regularized solutions of the discrete problem (3.2) when δ goes
to zero.

In the following we focus on Tikhonov regularization, so that we consider the
regularized solution

fλ
δ = (B∗

δ Bδ + λI)−1B∗
δ gδ (3.4)

where λ > 0. The regularization parameter λ = λδ is a suitable function of δ such
that fλδ

δ converges to the least-squares solution of problem (3.1) as δ goes to 0. More
precisely, to study the convergence of fλδ

δ , we consider both the reconstruction error∥∥∥fλδ

δ − f†
∥∥∥
H

and the residual
∥∥∥Afλδ

δ − Pg
∥∥∥
G

where f† is the generalised solution

of problem (3.1) and P is the projection on the closure of Im(A) in G. It is well
known that f† exists if and only if Pg ∈ Im(A) and that Af† = Pg; however, as
we study the residual we don’t need to assume the existence of f†.

3.2. Error Estimates

In this section we give error estimates for both the residual and the reconstruction
error in the setting presented in the previous section. To state our bounds, we need
some kind of a priori information on the exact datum. Given r > 0 and R > 0, we
let

Ωr,R = {g ∈ G |Pg = (AA∗)rφ, ‖φ‖G ≤ R}, (3.5)

whose role will be clarified by Prop. 3.2. Our main result is the following theorem.

Theorem 3.1. Assume (3.3). If g ∈ Ωr,R with 0 < r ≤ 1, then∥∥Afλ
δ − Pg

∥∥
G ≤

M

4λ
δ2 +

1√
λ

δ1 + Rλr. (3.6)

If g ∈ Ωr,R with 1
2 < r ≤ 3

2 , f† exists and∥∥fλ
δ − f†

∥∥
H ≤ M

2λ
3
2
δ2 +

1
λ

δ1 + Rλr− 1
2 . (3.7)
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Before proving the theorem, notice that both in (3.6) and in (3.7) the last term
in the bound depends only on λ, but not on the noise δ. On the other hand in the
first two terms the dependence on δ and on λ is factorized. Moreover condition (3.5)
on g affects only the third term in the bound.

Up to our knowledge, the first result similar to the above theorem was obtained
in [7, Th. 2] in the framework of integral equations with white noise. In a determin-
istic setting, [8, Th. 1] gives a convergence analysis for integral equations assuming
that B∗

δ Bδ is a degenerate kernel and gδ = g. [24, Th. 3.1] and [25, Th. 2] consider
a wider class of regularization methods, but Bδ has the form QnAPn, where Qn

and Pn are orthogonal projections. Our bound is of the same kind of the estimates
obtained in [26, Th. 2.2], [27, Th. 2.1] and [28, Th. 2.5]. Anyway in the above papers
only the reconstruction error is studied and different estimates of the perturbation
are considered.

To prove the theorem we let

fλ = (A∗A + λI)−1A∗g (3.8)

be the regularized solution of problem (3.1), so that the following decompositions
can be considered

Afλ
δ − Pg = A(fλ

δ − fλ) + (Afλ − Pg)

fλ
δ − f† = (fλ

δ − fλ) + (fλ − f†). (3.9)

The following proposition gives a bound of the first term in the above decomposi-
tions, whereas Prop. 3.2 estimates the second term.

Proposition 3.1. Assume (3.3). For any λ > 0, the following inequalities hold∥∥A(fλ
δ − fλ)

∥∥
G ≤

M

4λ
δ2 +

1
2
√

λ
δ1 (3.10)

∥∥fλ
δ − fλ

∥∥
H ≤ M

2λ
3
2
δ2 +

1
λ

δ1. (3.11)

Proof. To treat both the reconstruction error and the residual of the solution, we
introduce a parameter a ∈ [0, 1] and we let

Ca =
{

1 a = 0, a = 1
aa(1− a)(1−a) 0 < a < 1

. (3.12)

Moreover, we let T = A∗A, Tδ = B∗
δ Bδ, φ = A∗g and φδ = B∗

δ gδ, (3.3) ensures that

‖T − Tδ‖L(H) ≤ δ2 ‖φ− φδ‖H ≤ δ1. (3.13)

For all a ∈ [0, 1] the spectral theorem gives∥∥T a
δ (Tδ + λ)−1

∥∥
L(H)

≤ Ca

λ1−a
. (3.14)
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Moreover, the polar decomposition of Bδ yields Bδ = UT
1
2

δ , where U is a partial

isometry from H to Z, so that ‖U‖L(H,Z) = 1. Since T
1
2

δ commutes with (Tδ +λ)−1

∥∥(Tδ + λ)−1B∗
δ

∥∥
L(Z,H)

=
∥∥∥T 1

2
δ (Tδ + λ)−1U∗

∥∥∥
L(Z,H)

,

and Equation (3.14) with a = 1
2 implies∥∥(Tδ + λ)−1B∗

δ

∥∥
L(Z,H)

≤ 1
2
√

λ
. (3.15)

Finally, the definitions of fλ
δ and fλ give

fλ
δ − fλ = (Tδ + λ)−1φδ − (T + λ)−1φ

= [(Tδ + λ)−1 − (T + λ)−1]φδ + (T + λ)−1(φδ − φ) .

The known algebraic identity

(Tδ + λ)−1 − (T + λ)−1 = (T + λ)−1(T − Tδ)(Tδ + λ)−1

and triangle inequality ensure∥∥T a(fλ − fλ
0 )
∥∥
H ≤

∥∥T a(T + λ)−1(T − Tδ)(Tδ + λ)−1B∗
δ gδ

∥∥
H

+
∥∥T a(T + λ)−1(φδ − φ)

∥∥
H

≤ Ca

λ1−a
‖Tδ − T‖L(H)

‖gδ‖Z
2
√

λ
+

Ca

λ1−a
‖φδ − φ‖H

≤ Ca

λ1−a
δ2

M

2
√

λ
+

Ca

λ1−a
δ2

by (3.13). Bound (3.11) is clear choosing a = 0, whereas the bound (3.10) follows
choosing a = 1

2 and using the polar decomposition of A = WT
1
2 , which gives

‖Af‖G =
∥∥∥T 1

2 f
∥∥∥
H

.

We now study the convergence of the second term in (3.9). The definition of
regularization scheme ensures that both Afλ and fλ converge to Pg and f†, re-
spectively, if λ goes to zero [2]. However, to have an explicit estimate of the error,
we need some suitable a priori assumptions on the exact datum g or on f†. Such
assumptions are usually referred to as source conditions in the inverse problem lit-
erature. For example a standard result [3,2] shows that, if f† ∈ Im (A∗A)rA∗, then∥∥fλ − f†

∥∥ = O(λr). The definition (3.5) is a slightly modification of the above
source condition, which provides the desired error estimates.

Proposition 3.2. If g ∈ Ωr,R with 0 < r ≤ 1 then∥∥Afλ − Pg
∥∥
G ≤ Rλr

for 0 < r ≤ 1.
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If g ∈ Ωr,R with 1
2 < r ≤ 3

2 , then f† exists and∥∥fλ − f†
∥∥
H ≤ Rλr− 1

2

for 1/2 < r ≤ 3/2.

Proof. The proof is standard [2]. Let 0 < r ≤ 1, since tr is a concave function

λ

λ + σ
σr ≤ λr λ, σ > 0. (3.16)

The assumption g ∈ Ωr,R ensures

Pg −Afλ = (I −A(A∗A + λI)−1A∗)Pg = (I −AA∗(AA∗ + λI)−1)(AA∗)rφ.

The spectral theorem with (3.16) gives
∥∥Afλ − Pg

∥∥
G ≤ Rλr.

To prove the second bound, let A∗ = U(AA∗)
1
2 be the polar decomposition of A∗,

then

Pg = (AA∗)r = (AA∗)1/2(AA∗)cφ = (AA∗)1/2U∗U(AA∗)cU∗Uφ = A(A∗A)cUφ,

where c = r − 1/2 ∈]0, 1]. It follows that Pg ∈ Im A, so that f† exists and f† =
(A∗A)cUφ. Mimicking the proof of the first bound,

f† − fλ = (I − (A∗A + λI)−1A∗A)f† = (I − (A∗A + λI)−1A∗A)(A∗A)cUφ

and replacing r by c in (3.16)
∥∥fλ − f†

∥∥
H ≤ Rλc.

The bounds claimed in Th. 3.1 follow from the above two propositions and
Cauchy-Schwarz inequality applied to (3.9).

3.2.1. Comparison with Results on Inverse Problem with Noisy Operator

We compare Th. 3.1 with the known results for Tikhonov regularization in the
presence of modeling error [30]. To this aim, we consider noisy problems Bδf = gδ,
where Bδ is an operator from H to G and gδ ∈ G such that

‖gδ − g‖G ≤ η1 ‖Bδ −A‖L(H,G) ≤ η2.

In this case it is known [30] that if

lim
η1,η2→0

(η1 + η2)2

λ(η1, η2)
= 0 (3.17)

the regularized solution fλ
δ approaches f†. Since

‖B∗
δ Bδ −A∗A‖L(H) ≤ (‖Bδ‖L(H,G) + ‖A‖L(H,G) η2 ≤ C1η2 = δ2

‖B∗
δ gδ −A∗g‖H ≤ ‖gδ‖G η2 + ‖A‖L(H,G) η1 ≤ C2(η1 + η2) = δ1

it follows that (3.17) is weaker than (3.11).
This observation suggests that the noise can be evaluated by means of

‖U∗
δ gδ − U∗g‖H ≤ η1 and ‖|Bδ| − |A|‖L(H,G) ≤ η2, where A = U |A| and Bδ =
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Uδ|Bδ| are the polar decompositions of A and Bδ, respectively. In fact repeating
the standard proof [30] for Tikhonov regularization in the presence of modeling
error, we have that, if Condition (3.17) holds, then the regularized solution fλ

δ

approaches f†. However, in the applications it is difficult to evaluate the polar de-
composition and, hence, to ensure that the noisy model is an approximation of the
exact model.

Finally, we observe that the content of Prop. 3.1 can be regarded as regular-
ization in the presence of modeling error. Indeed, the least-squares solutions of the
exact problem Af = g are the solutions of the inverse problem

A∗Af = A∗g.

This suggests to replace the noisy problem Bδf = gδ with the problem

B∗
δ Bδf = B∗

δ gδ,

so that B∗
δ gδ is a noisy approximation of the exact datum A∗g, B∗

δ Bδ is the noisy
model of the exact model A∗A and the noise is controlled by two quantities

‖B∗
δ Bδ −A∗A‖L(H) ≤ δ1 ‖B∗

δ gδ −A∗g‖H ≤ δ2.

However, the regularized solution fλ
δ = (B∗

δ Bδ + λ)−1B∗
δ gδ is not the Tikhonov

regularization of the problem B∗
δ Bδf = B∗

δ gδ. Indeed, if Tδ = T ∗δ = B∗
δ Bδ and

φδ = B∗
δ gδ, we have that

fλ
δ = (Tδ + λ)−1φδ = (T ∗δ Tδ + λTδ)−1T ∗δ φδ,

whereas the Tikhonov regularized solution of Tδf = φδ is (T ∗δ Tδ + λ)−1T ∗δ φδ.

4. Discretization of Carleman Operators

In this section we discuss how to evaluate conditions (3.3) for inverse problems
induced by a Carleman operator [31]. This setting is general enough to cope with
learning theory as well as integral equations. After briefly recalling the definition
and main properties of Carleman operator we discuss two different discretization
settings. The first one is deterministic and is illustrated with the classical problem of
differentiating a function. The second setting is stochastic and requires probabilistic
estimates of vector valued random variables.

4.1. Carleman Operators

In the present section we briefly review the notion of Carleman operator that allows
an unifying approach to the theories of reproducing kernel Hilbert spaces and inte-
gral equations. Our presentation follows the book of [31], where a clear exposition of
the relation between Carleman operators and integral equations is given. The book
of [32] is a source for results and bibliography on this topic. In [4,13] and references
therein, there is an account of the theory of reproducing kernel Hilbert spaces in the
context of inverse problems. Recent results on the Tikhonov regularization in the
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framework of reproducing kernel Hilbert space can be found in [33] and references
therein.

Let X be a closed subset of Rd and ρX be a finite measure on X, we define
G = L2(X, ρX) as the Hilbert space of functions f : X → R square integrable with
respect to ρX .
Given a (separable) Hilbert space H, let γ : X → H be a map such that γ is
measurable and bounded. We define the Carleman operator A : H → G associated
with the map γ [31] by

(Af)(x) = 〈f, γx〉H ρX−almost all x ∈ X

for all f ∈ H. A natural way of discretizing the Carleman operator A is the following.
Given n ∈ N, we consider n points x = (x1, . . . , xn) of X and we define the operator
Bx,n from H to Z = Rn by

(Bx,nf)i = 〈f, γxi
〉H i = 1, . . . , n f ∈ H,

where Z is endowed with the scalar product

〈y,y′〉Z =
n∑

i=1

aiyiy
′
i, (4.1)

with ai ∈ R+ suitable functions of the sample x.
The following proposition gives the main properties of A and Bx,n (for the proof

see, for example, [34,35]).

Proposition 4.1. The operator A is a Hilbert-Schmidt operator from H into G,

A∗φ =
∫

X

φ(x)γx dρX(x), (4.2)

A∗A =
∫

X

〈·, γx〉H γx dρX(x), (4.3)

(AA∗φ)(t) =
∫

X

〈γt, γx〉H φ(x) dρX(x) = (LΓφ)(t) (4.4)

where φ ∈ G, the first integral converges in norm, the second integral in Hilbert-
Schmidt norm and LΓ is the integral operator with kernel Γ(t, x) = 〈γt, γx〉H .

The operator Bx,n is a finite rank operator from H into Z,

B∗
x,ny =

n∑
i=1

aiyiγxi
∀ y ∈ Z (4.5)

B∗
x,nBx,n =

n∑
i=1

ai 〈·, γxi
〉H γxi

. (4.6)

Let now g ∈ L2(X, ρX) be the exact datum, then problem (3.1) amounts to find
f ∈ H such that

〈f, γx〉H = g(x) ρX−almost all x ∈ X.
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In particular, if the generalized solution f† exists, it is the minimal norm solution
of

(Pg)(x) =
〈
f†, γx

〉
H ρX−almost all x ∈ X, (4.7)

and the condition g ∈ Ωr,R becomes Pg ∈ Im Lr
Γ with

∥∥L−r
Γ Pg

∥∥
ρ
≤ R. Notice that

if γ is weakly continuous and the support of the measure ρX is X, then (4.7) holds
for all x ∈ X and f† is the unique solution of (4.7) that belongs to the closure of
the linear span of the set {γx |x ∈ X}.

The discretized version of g is a vector y = (y1, . . . , yn) ∈ Rn, so that prob-
lem (3.2) becomes

〈f, γxi〉H = yi i = 1, . . . , n.

Letting z = (x,y), according to the notation of Section 3, we denote by

fλ = (A∗A + λ)−1A∗g

fλ
z,n = (B∗

x,nBx,n + λ)−1B∗
x,ny,

the regularized solutions of exact and discrete problems, respectively, where we add
the subscript z = (x,y) to emphasize the dependence of the solution on x and y.
Moreover, (4.6) and (4.5) gives

fλ
z,n =

n∑
i,j=1

ajγxj

(
(Γx + λ)−1

)
ji

yi, (4.8)

where Γx is the n × n matrix (Γx)ij =
〈
γxj , γxi

〉
H. In particular, fz,n belongs to

the linear span of the set {γxi
| i = 1, . . . , n} [7,11].

In order to apply the results of Th 3.1, we discuss some reasonable hypotheses
on the choice of the sample x and the noisy datum y. We consider two different
settings.

4.2. Deterministic Discretization

In this section, we consider a framework where the measure ρX is known, the points
xi are given and the values yi are samples of the datum g without noise, that is,
yi = g(xi). Clearly, this is an ideal framework where the noise is due only to the
finite dimensional approximation [23].

Moreover, we study the reconstruction error of the approximated solution. To
this aim, we assume that g ∈ Im A so that, by (4.7), we can restate the hypothesis
that the noise is zero by the fact that

yi = g(xi) =
〈
f†, γxi

〉
H ∀i ∈ I. (4.9)

We choose the sample in the following way. We consider a family of measurable sets
X1, . . . , Xn ⊂ X such that

(1) xi ∈ Xi for all i ∈ I;
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(2) ρX(Xi ∩Xj) = 0 for all i 6= j;
(3) ∪iXi = X.

Then we have the following result.

Proposition 4.2. Let ai = ρX(Xi) in (4.1), then

‖y‖Zx
≤
√

ακ
∥∥f†∥∥H (4.10)∥∥A∗g −B∗

x,ny
∥∥
H ≤ 2

∥∥f†∥∥H ακc(n) (4.11)∥∥A∗A−B∗
x,nBx,n

∥∥
L(H)

≤ 2ακc(n), (4.12)

where α = ρX(X), κ = supx∈X ‖γx‖H and

c(n) = max
i∈I

(
sup
x∈Xi

‖γx − γxi
‖H

)
(4.13)

Proof. We first prove (4.12). The definition of Xi and ai with (4.3) and (4.6)
gives∥∥A∗A−B∗

x,nBx,n

∥∥
L(H)

=

∥∥∥∥∥∑
i

∫
Xi

(〈·, γx〉H γx − 〈·, γxi
〉H γxi

) dρX(x)

∥∥∥∥∥
L(H)

≤
∑

i

ρX(Xi) sup
x∈Xi

‖〈·, γx〉H γx − 〈·, γxi
〉H γxi

‖L(H)

≤
(

max
i∈I

sup
x∈Xi

‖〈·, γx〉H γx − 〈·, γxi
〉H γxi

‖L(H)

)∑
i

ρX(Xi)

≤ 2ρX(X)
(

max
i∈I

sup
x∈Xi

(‖γx‖H ‖γx − γxi
‖H)

)
≤ 2κc(n)α,

so that (4.12) is proved. Moreover (4.9) implies

‖y‖2
Z =

n∑
i=1

ai

〈
f†, γxi

〉2
H

≤
n∑

i=1

ρX(Xi)
∥∥f†∥∥2

H ‖γxi
‖2
H

≤ α
∥∥f†∥∥2

H κ2.

Finally (4.7), (4.2) and (4.6) give∥∥A∗Ag −B∗
x,nBx,ny

∥∥
H =

∥∥(A∗A−B∗
x,nBx,n)f†

∥∥
H ,

which implies (4.11) by means of (4.12).

We are now in position to apply Th. 3.1. Assume that the exact datum g ∈ Ωr,R

with 1
2 < r ≤ 3

2 , then (3.7) implies∥∥fλ
z,n − f†

∥∥
H ≤

∥∥f†∥∥H κ c(n) α

(
2
λ

+
κ
√

α

λ
3
2

)
+ Rλr− 1

2 . (4.14)
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for any λ > 0, so that fλ
z,n converges to f† if λ = λz,n is chosen such that

lim
n→+∞

λz,n = 0 and lim
n→+∞

c(n)

λ
3
2
z,n

= 0.

In the following example we show how to find λ = λz,n.

4.2.1. The problem of differentiating a real function

As a simple example of the above setting, we consider the problem of computing
the derivative of a function g : [0, 1] → R, when a finite set of samples yi = g(xi) is
given.

First of all, we rewrite the above problem by means of the formalism of Carleman
operators. Let H1[0, 1] be the Sobolev space of continuous real functions on [0, 1]
whose weak derivative is in L2([0, 1], dx), where dx is the Lebesgue measure on
[0, 1]. The scalar product in H1[0, 1] is given by

〈f, g〉H1[0,1] = f(0)g(0) +
∫ 1

0

f ′(x)g′(x) dx.

We define A : H → L2([0, 1], dx) as

(Af)(x) =
∫ x

0

f(t) dt x ∈ [0, 1],

for all f ∈ H. Clearly, Af = g if and only if f = g′, so that f† = g′ for all g ∈ Im A.
Moreover, a simple calculation shows that, if x ∈ X,

(Af)(x) = 〈f, γx〉H1[0,1]

where γx ∈ H1[0, 1] is given by

γx(t) =

{
x + tx− t2

2 t ≤ x

x + x2

2 t > x
.

Since the function

(x, t) 7→ 〈γx, γt〉H1[0,1] = xt(1 +
1
2

min{x, t})− 1
6
(min{x, t})3

is continuous it follows that γ is measurable and, clearly, it is bounded. Hence A is
the Carleman operator associated with the map γ

[0, 1] 3 x 7→ γx ∈ H1[0, 1]

and we can apply the result of Prop. 4.2 with X = [0, 1], ρX = dx, H = H1[0, 1].
For the discretization, we choose the points xi = i

n for all i = 0, . . . , n and
Xi = [xi−1, xi]. If λ > 0, fλ

z,n is the regularized solution of the discrete problem∫ xi

0

f(t) dt = g(xi) i = 1, . . . , n,
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where f ∈ H1[0, 1]. According to Equation (4.8), fλ
z,n is a linear combination of the

functions γxi , that are quadratic splines: piecewise polynomials of degree two with
continuous derivative [13]. From a numerical point of view, the computation of fλ

z,n

reduces to compute the inverse of the n× n symmetric matrix

Γx(xi, xj) = xixj(1 +
1
2

min{xi, xj})−
1
6
(min{xi, xj})3.

To apply Equation (4.14), we notice that α = ρX([0, 1]) = 1 and, if 0 ≤ t ≤ x ≤ 1,

‖γx − γt‖H =

√
(x− t)2

3 + x + 2t

3
≤
√

2|x− t|.

It follows that c(n) =
√

2
n and, letting t = 0, that κ =

√
2. Replacing these bounds

in Equation (4.14) we obtain that∥∥fλ
z,n − f†

∥∥
H1[0,1]

≤ 2
√

2 ‖g′‖H1[0,1]

1
n

(√
2

λ
+

1
λ

3
2

)
+ Rλr− 1

2 .

In this setting the optimal choice of the regularization parameter is λn = n−
1

1+r

and, with this choice, ∥∥fλ
z,n − f†

∥∥
H1[0,1]

= O
(
n−

2r−1
2+2r

)
,

here the parameter r is related to the a priori assumption g ∈ Im Lr
Γ, which is an

assumption on the smoothness of g [13].

4.3. Stochastic discretization: learning from examples

In this section we consider the framework of learning theory as given in Section 2.
In this setting, ρX is the marginal distribution of the unknown probability measure
ρ and H is the (separable) reproducing kernel Hilbert space with kernel K. For all
x ∈ X, we let γx = Kx, so that the map γ is bounded by (2.1) and measurable since
K is measurablea. Eq. (2.2) implies that the corresponding Carleman operator A

is the canonical inclusion IK and the exact datum g is the regression function fρ.
Moreover, with the choice ai = 1

n in (4.1), for any training set z = (x,y) Bx,n is
the sampling operator Sx,n and y is the datum of the discretized problem.
Since both Sx,n and y are random variables, we need a probabilistic estimate of
the perturbation measure δ.

Proposition 4.3. Let κ = supx∈X ‖Kx‖H, M = supy∈Y |y| and δ = (δ1, δ2) ∈ R2
+,

then

Pz∼ρn [ ‖y‖n > M ] = 0 (4.15)

Pz∼ρn

[ ∥∥I∗Kfρ − S∗x,ny
∥∥
H > δ1

]
≤ 2 exp

(
− nδ1

2

8κ2M2

)
(4.16)

aIndeed, the measurability of K and the fact that {Kx, x ∈ X} is total in H implies that x 7→
〈Kx, f〉H is measurable for all f ∈ H. Since H is separable, this ensures the measurability of γ.
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Pz∼ρn

[ ∥∥I∗KIK − S∗x,nSx,n

∥∥
L(H)

> δ2

]
≤ 2 exp

(
−nδ2

2

8κ4

)
. (4.17)

Proof. The first equation is trivial. To prove (4.16) let ξ1 : Z → H be the random
variable

ξ1(x, y) = Kxy − I∗Kfρ.

Eq. (4.2) implies that E[ξ1] = 0. The definitions of κ and M ensure that
‖ξ(x, y)‖H ≤ 2κM . Since S∗x,ny − I∗Kfρ = 1

n

∑n
i=1 ξ1(xi, yi), Pinelis inequality (see

Th.3.5 of [36]) gives

Pz∼ρn

[ ∥∥S∗x,ny − I∗Kfρ

∥∥
H > δ1

]
≤ 2 exp

(
− nδ1

2

2(2κM)2

)
.

Let L2(H) be the Hilbert space of the Hilbert-Schmidt operators on H and ξ2 :
Z → L2(H)

ξ2(x, y) = 〈·,Kx〉HKx − I∗KIK ,

which is well defined since the first term is a rank one projection and the second
one is a Hilbert-Schmidt operator, see Prop. 4.1. Eq. (4.3) implies that E[ξ2] = 0
and the definition of κ ensures

‖ξ(x, y)‖L2(H) ≤ 2κ2.

Reasoning as above,

Pz∼ρn

[ ∥∥Sx,nS∗x,n − I∗KIK

∥∥
L2(H)

> δ2

]
≤ 2 exp

(
− nδ2

2

2(2κ2)2

)
.

The result follows observing that ‖·‖L(H) ≤ ‖·‖L2(H).

Th. 3.1 with the above probabilistic bounds gives the result claimed at the end
of Section 2. Precisely,

Theorem 4.1. Assume there is 0 < r ≤ 1 and R such that
∥∥L−r

K Pfρ

∥∥
ρ
≤ R and

choose the regularization parameter according to the rule λn = n−
1

2r+1 . For any
ε > 0

Pz∼ρn

[
‖fz,n − Pfρ‖2

ρ > (Cε + R)2n−
r

r+1

]
≤ 2

(
e−C1ε2 + e−C1ε2

)
(4.18)

where C, C1 and C2 are suitable constants depending only on κ, M and r. In
particular

lim sup
n→+∞

E[‖fz,n − Pfρ‖2
ρ]

n−
r

r+1
< +∞. (4.19)

The bound (4.19) means that the rate of convergence on average [15] is n−
r

r+1

and (4.19) follows from (4.18) by integrating the above tail inequality. The constants
are explicitly given by

C1 =
1

8κ2M2
C2 =

1
8κ4

C =
2M + 1

4
,
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which are independent from the distribution ρ, whereas the constant R could pos-
sibly strongly depend on ρ [37].
The error bounds obtained in this paper can be shown not to be optimal in the suit-
able minimax sense [14,37,38]. However, we believe, they deserved to be presented
because of the simplicity of their derivation, and also because of their structure,
which decouples the probabilistic analysis from the dependence on λ. This last
characteristic allows a straightforward application of our error bounds to the case
of data-dependent choice of the regularization parameter.
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