
Dipartimento di Informatica e
Scienze dell’Informazione

•
••
•• ••

Spectral Methods for Regularization in Learning Theory

Ernesto De Vito, Lorenzo Rosasco, Alessandro Verri

Technical Report DISI-TR-05-18

DISI, Università di Genova
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Abstract
In this paper we show that a large class of regularization methods designed for solving ill-posed
inverse problems gives rise to novel learning algorithms. All these algorithms are consistent
kernel methods which can be easily implemented. The intuition behind our approach is that, by
looking at regularization from a filter function perspective, filtering out undesired components
of the target function ensures stability with respect to the random sampling thereby inducing
good generalization properties. We present a formal derivation of the methods under study
by recalling that learning can be written as the inversion of a linear embedding equation given
a stochastic discretization. Consistency as well as finite sample bounds are derived for both
regression and classification.

1. Introduction

In the context of learning the term regularization refers to techniques allowing to avoid over-
fitting. Typically, regularization boils down to a Lagrangian formulation of an appropriate con-
strained minimization problem - e.g. Tikhonov regularization, ridge regression or regularized
least squares. In the context of inverse problems regularization is formally defined and leads
to algorithms for determining approximate solutions to ill-posed problems solutions which are
stable with respect to noise (see for example Tikhonov and Arsenin (1977), Engl et al. (1996),
Bertero and Boccacci (1998) and references therein).

In this paper, by restricting the focus on the quadratic loss function and hypothesis spaces
which are reproducing kernel Hilbert spaces we follow (De Vito et al., 2005b) and we cast the
problem of learning in a functional analytical framework which is ideal to exploit the connection
with the theory of inverse problems. We show that a large class of regularization schemes
typically used in the context of inverse problems gives rise to consistent kernel methods. We
prove finite sample bounds for both regression and classification. We also provide an intuition of
the way such algorithms work from a filter function point of view. Since we work with the square
loss function, we need to solve a (possibly ill-conditioned) matrix inversion problem. Filtering
out the components corresponding to small singular values allows us to stabilize the problem
from a numerical point view. In order to understand the filter effect on generalization we have
to look at the population case, when the probability underlying the problem is known. In this
limit case we have to invert a linear operator and the filter allows us to find a stable solution
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with respect to perturbations on the problem. The picture is then clear since the sample case
can be seen as a perturbation (due to random discretization) of the population case: the true
probability measure is replaced by the empirical measure on the sample. Unlike the inverse
problem setting, in learning stability is meant with respect to perturbations on the problem due
to the random sampling (see Rakhlin et al. (2005) and reference therein for different notions of
stability).

The remarkable fact of our analysis is that we can treat most of the linear methods for ill-
posed inverse problems in a unified framework. We describe a set of simple sufficient conditions
allowing an easy proof that algorithms for inverse problems are consistent learning algorithms.
As a by-product of this analysis, we find that these algorithms have different properties from
both the theoretical and the algorithmic point of view. The price we pay for our generality
is that for the two algorithms already studied (see Smale and Zhou (2005), Caponnetto and
De Vito (2005) for Tikhonov regularization and Yao et al. (2005) for gradient descent learning)
the bounds we find do not match the best available bounds. In a follow-up paper (Bauer et al.,
2005) a more technical analysis, based on the same techniques considered here, is given and the
best available bounds recovered as special cases.

The idea to exploit regularization algorithms for ill-posed problems in function approximation
problem is well known. Indeed, in a deterministic setting (the inputs are fixed and the noise
deterministic), interpolation and approximation are standard ill-posed problems (see for example
Bertero et al. (1985, 1988) for a review). In the context of statistics the focus was mostly
on Tikhonov regularization, also called ridge regression (Hastie et al., 2001) or regularized
(penalized) least squares (Wahba, 1990). In this setting the input points are either fixed or
sampled and the noise is a random variable. Several results are available (see for example Györfi
et al. (1996)) but the probabilistic analysis is usually done in expectation. Some results for
general regularization schemes are given in Loubes and Ludena (2004) though for fixed inputs.
In machine learning the idea to use regularization goes back to Poggio and Girosi (1992) and
the connection between large margin kernel methods such as Support Vector Machines and
regularization is well known (see Vapnik (1998), Evgeniou et al. (2000) and reference therein).
Again ideas coming from inverse problems regarded mostly the use of Tikhonov regularization
and were extended to several error measures other then the quadratic loss function. Concerning
this latter loss function a theoretical analysis can be found in Smale and Zhou (2005) and
Caponnetto and De Vito (2005). The gradient descent learning algorithm in Yao et al. (2005)
can be seen as an instance of Landweber iteration (Engl et al., 1996) and is related to the
boosting algorithm, called L2 boost in Bühlmann and Yu (2002). For other iterative methods
some partial results, which do not take into account the random sampling, are presented in Ong
and Canu (2004), where promising experiments on real and simulated data are also presented.

In this paper we build up on the connections between the theory of learning and the theory
of inverse problems (De Vito et al., 2005b,a). The interplay between ill-posedeness, stability
and generalization is indeed not new to learning (see Poggio and Girosi (1992), Evgeniou et al.
(2000), Bousquet and Elisseeff (2002), Mukherjee et al. (2004), Poggio et al. (2004)).

The plan of the paper is the following. In Section 2, after describing the main idea of
learning in reproducing kernel Hilbert spaces, we describe the considered class of regularization
algorithms from a filter function perspective. In Section 3 we give a more formal and abstract
characterization of regularization as well as several examples of algorithms. The main theoretical
results are also presented and discussed whereas the proofs can be found in Section 5. In Section
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4 we discuss in depth the connection between learning ad inverse problems. Finally, we end with
some comments and the main open issues on this subject.

2. Regularization in Reproducing Kernel Hilbert Spaces

We start giving a brief account of learning from examples (see Vapnik (1998), Cucker and Smale
(2002b), Evgeniou et al. (2000), Bousquet et al. (2004) and references therein). The focus is on
the regression problem and the quadratic loss function though we will recall how some results
for classification can be derived. The problem of (supervised) learning can be thought as the
problem of finding an unknown input-output relation on the basis of a finite number of input-
output instances (the examples). Ideally one would like to find a rule to predict the output once
a new input is given, that is to be able to generalize. To allow modeling the uncertainty in the
learning process the problem is formalized in a probabilistic setting.

The input space X is a closed subset in IRd, the output space is Y = [−M,M ] for regression
(Y = {−1, 1} for classification) and the sample space is simply Z = X × Y . We model the
input-output relation endowing Z with a probability measure ρ(x, y) = ρ(y|x)ρX(x), where ρX

is the marginal distribution on X and ρ(y|x) is the conditional distribution of y given x. In
this setting what is given is a training set z = (x,y) = {(x1, y1), · · · , (xn, yn)} drawn i.i.d.
according to ρ and the goal is to find an algorithm z → fz such that the function fz(x) is a
good estimate of the output y. The quality of an estimator fz is assessed by its the expected
error

E(fz) =
∫

X×Y
(y − fz(x))2dρ(x, y),

which can be interpreted as the average error on all the possible input-output pairs. Clearly
we would like to find an estimator with small expected error. The minimizer of the expected
error over the space L2(X, ρX) of square integrable functions with respect to ρX becomes the
regression function

fρ(x) =
∫

Y
y dρ(y|x).

Moreover we recall that for f ∈ L2(X, ρX) we can write

E(f) = ‖f − fρ‖2
ρ + E(fρ) (1)

so that we can restate the problem as that of approximating the regression function in the norm
‖·‖ρ = ‖·‖L2(X,ρX). Moreover since fz is a random variable we need some probabilistic analysis
and more precisely we are interested into a worst case analysis through finite sample bounds
such that

P [ E(fz)− E(fρ) > ε] ≤ η(ε, n) ∀ε > 0, n ∈ IN.

where η(ε, n) does not depend on ρ and limn→+∞ η(ε, n) = 0.
From the so called ”no free lunch” theorem (Devroye et al., 1996) is well-known that we cannot
derive this kind of results without furtherly restricting the class of possible problems. A usual
way to put restrictions on the possible probability measures is assuming fρ belonging to some
compact set often characterized in terms of some smoothness or approximation properties (see
for example the discussion in DeVore et al. (2004)). In this paper we do this relating the problem
to the approximation schemes we consider, that is regularization in reproducing kernel Hilbert
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spaces. We devote the rest of this section to illustrate the class of approximation schemes we are
going to analyze and discuss a fairly natural way to impose condition on the regression function
fρ.

2.1 Learning the Regression Function via Regularization: Filter Function Perspective

The algorithms we consider look for an estimator in an hypotheses spaceH which is a reproducing
kernel Hilbert space (RKHS) on the set X (Aronszajn, 1950). This means that H is a Hilbert
space of functions f : X → IR such that, for all x ∈ X, there is a function Kx ∈ H satisfying
the following reproducing property

f(x) = 〈f,Kx〉H f ∈ H

where 〈·, ·〉H is the scalar product in H. The RKHS H is uniquely characterized by its kernel
K : X × X → IR, K(t, x) = Kx(t), which is symmetric and positive definite. For technical
reasons, we assume that the kernel is measurable and bounded

sup
x∈X

√
K(x, x) ≤ κ, (2)

so that H is a subspace of L2(X, ρX) (however, in general, H is not closed in L2(X, ρX)).
Moreover we require H to be dense in L2(X, ρX) so that

inf
f∈H

E(f) = inf
f∈L2(X,ρX)

E(f) = E(fρ).

(however, we do not require that fρ ∈ H). This assumption simplifies the exposition and can
be relaxed replacing fρ with its projection on the closure of H in L2(X, ρX).

A classic and yet effective algorithm is regularized least-squares algorithm (RLSA). A family
of estimators is found solving the regularized least square problem

min
f∈H

{Ez(f) + λ ‖f‖2
H} (3)

where λ is a positive parameter and

Ez(f) =
1
n

n∑
i=1

(yi − f(xi))2 (4)

is the empirical error. The final estimator is defined providing the above scheme with a parameter
choice λn = λ(n, z) so that fz = fλn

z . Understanding the way such an algorithm works allows
to develop different regularization schemes. A possible interpretation relates the the penalty
‖f‖2

H to the complexity of the solution. Choosing λ > 0 we restrict the possible solution in
a certain ball in the RKHS and the radius of of the ball is related to complexity measure such
as covering numbers (Cucker and Smale, 2002b) or Rademacher complexities on such a spaces
(Mendelson, 2003). This way of reasoning looks at the RLSA as an approximate implementation
of Structural Risk Minimization Vapnik (1998). To avoid over-fitting, i.e. the solution grows in
complexity to describe the training set and becomes unable to generalize, we put a constraints
on the complexity of the solution. The regularization parameter λ should be chosen in such a
way that the empirical error and the complexity of the solution are balanced out.
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Another point of view is that of considering the penalty term as a smoothness term which
enforces stability of the solution. Here stability has to be thought with respect to the random
sampling of the data. This point of view is mostly adopted in the regularization of ill-posed
inverse problems where anyway usually only output noise and deterministic sampling is consid-
ered. Anyway this point of view is not new to learning theory since the connection between
stability and generalization was considered in Bousquet and Elisseeff (2002), Mukherjee et al.
(2004), Poggio et al. (2004). As we restrict our analysis to the quadratic loss function we can
have some interesting insight. Motivated but recent results on the connection between learning
and inverse problems we now try to explain why smoothness is also important for generalization
in learning.

Indeed the regularized least-squares algorithm can be seen as implementing a low pass filter
on the expansion of the regression function on suitable basis. We recall that the representer
theorem Kimeldorf and Wahba (1970) ensures that the solution of problem (3) can be written
as

fλ
z =

n∑
i=1

αK(x, xi) with α = (K + nλI)−1y, (5)

where K is the kernel matrix (K)ij = K(xi, xj). From the explicit form of the coefficients we
see that as λ > 0 we are numerically stabilizing a matrix inversion problem which is possibly
ill-conditioned (that is numerically unstable). This is important from the algorithmic point of
view, but it is also crucial to ensure the generalization properties of the estimator. For the
population version of (3)

min
f∈H

{E(f) + λ ‖f‖2
H}, (6)

the representer theorem (see for example Cucker and Smale (2002a)) gives the explicit form of
the solution as

fλ = (LK + λI)−1LKfρ

where LK is the integral operator of kernel K acting in L2(X, ρX)

(LKf)(t) =
∫

K
K(t, x)f(x)dρX(x).

and we considered fλ as a function in L2(X, ρX). Since the kernel is bounded, symmetric
and positive definite, LK is a positive compact operator1 and the spectral theorem ensures the
existence of a basis of eigenfunctions LKui = σiui with σi ≥ 0. Then we can rewrite the
solution of the above problem as

fλ =
∞∑
i=1

σi

σi + λ
〈fρ, ui〉ρ ui.

From the latter expression we see that the effect of regularization is that of a low pass filter
which select the components of the regression function corresponding to large eigenvalues. If we
slightly perturb ρ, the operator LK and fρ change, however the filter ensures that corresponding
solution fλ is close to fρ provided that the perturbation is small and the parameter λ is suitable
chosen. The idea is that we can look to the sample case exactly as a perturbation on the

1. This fact is trivial if X is compact, otherwise see Carmeli et al. (2005).
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problem due to random sampling. In this case we think of y and K as perturbation of fρ and
LK respectively. The low pass filter is then a way to ensure stability. This intuition is derived
in a more formal way in Section 4 looking at learning in RKHS as an inverse problem.

For regularized least squares algorithm the filter function is gλ(σ) = 1
σ+λ but it is natural to

extend this approach to other regularization gλ. Each of them defines a corresponding algorithm
by means of

fλ
z =

n∑
i=1

αiK(x, xi) with α =
1
n

gλ(
K
n

)y (7)

and again the the final estimator is defined providing the above scheme with a parameter choice
λn = λ(n, z) so that fz = fλn

z . Clearly not all the functions gλ are admissible and we give a
characterization of regularization in the next section.

Here we note that the filter function point of view suggests a natural way to describe
regularity of the regression function. Indeed since fρ ∈ L2(X, ρX) we can consider the expansion
on the eigensystem of LK to write

fρ =
∞∑
i=1

〈fρ, ui〉ρ ui

and clearly
∞∑
i=1

〈fρ, ui〉2ρ < ∞, (8)

that is, the Fourier coefficients of fρ with respect to the basis have to go sufficiently fast to
zero. A natural way to enforce some more regularity on fρ is assuming something more on how
fast the Fourier coefficients go to zero. The easier way to do this is to replace (8) with

∞∑
i=1

〈fρ, ui〉2ρ
σr

i

< ∞

where {σi} are the eigenvalues of LK and r > 0. In other words we assume that

fρ ∈ Ωr,R = {f ∈ L2(X, ρX) : f = Lr
Kv, ‖v‖ρ ≤ R}. (9)

Such a condition was first used in the context of learning in Cucker and Smale (2002b) but as
noted in De Vito et al. (2005b,a) is a slightly generalization of the classical regularity condition
in ill-posed inverse problems, namely Hölder source condition (Engl et al., 1996). For r = 1/2
it amounts to assume that the regression function can be seen as as function in the RKHS.
In general it depends on the marginal measure ρX . The bigger is the smoothness parameter r
the easier it is to approximate fρ. Intuitively the faster the Fourier coefficients go to zero less
information has to be recovered and the fewer examples are needed.

In the following section first, we study under which conditions on gλ(σ) we can define
sensible learning algorithms and discuss several examples. Then we state and discuss finite
sample bounds as well as consistency for such a class of algorithms.

7



3. Regularization Algorithms for Learning

We now present the class of regularization algorithms we are going to study. Regularization
is essentially defined according to what is usual done for ill-posed inverse problems. The main
difference is that we require an extra condition, namely a Lipschitz condition, which enables us
to show that the obtained learning algorithms are stable.

Definition 1 (Regularization) We say that a family gλ : [0, κ2] → IR, 0 < λ ≤ κ2, is regular-
ization if the following conditions hold

1. There exists a constant D such that

sup
0<σ≤κ2

|σgλ(σ)| ≤ D (10)

2. There exists a constant B such that

sup
0<σ≤κ2

|gλ(σ)| ≤ B

λ
(11)

3. There is a constant ν > 0, namely he qualification of the regularization gλ such that

sup
0<σ≤κ2

|1− gλ(σ)σ|σν ≤ γνλ
ν , ∀ 0 < ν ≤ ν (12)

where the constant γν > 0 does not depend on λ.

4. The following Lipschitz condition holds

|(gλ(σ)− gλ(σ′))| ≤ L

λµ
|σ − σ′| (13)

where L is a constant independent to λ and µ a positive coefficient.

Let us briefly discuss such conditions. The first three conditions are standard in theory of inverse
problems (Engl et al., 1996) whereas the last one is added to deal with the learning setting. The
first two conditions are of technical nature, however the constants B and D will enter in the
form of the bounds. Basically they ensure that the obtained algorithm can be seen as family of
linear continuous maps, parameterized by the regularization parameter λ. The third condition
ensures that the solution of the population problem

fλ = gλ(LK)LKfρ

converges to fρ when λ goes to zero. In other words this ensures that the bias (approximation
error) goes to zero as λ goes to zero. Moreover it is also sufficient to derive the corresponding
convergence rate if fρ satisfies some a priori condition like (9). The meaning of the qualification
will be apparent from Theorem 9. Here we just mention the fact that methods with finite
qualification cannot fully exploit the possible regularity of the solution and the results no longer
improve beyond a certain regularity level.
The fourth condition is quite natural since it ensures stability with respect to perturbations of
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the operator LK and in practice we can only have approximation of LK based on the training
set. Indeed Theorem 8.1 in Birman and Solomyak (2003) ensures that Condition 13 implies

‖gλ(B1)− gλ(B2)‖ ≤
L

λµ
‖B1 −B2‖

where B1, B2 belongs to the Banach space of normal operators endowed with the uniform norm
and have spectrum in [0, κ2]. The exponent µ will essentially determine the rate of convergence
of each algorithm.

3.1 Some Examples of Regularization Algorithms and Semiiterative Regularization

In this Section we describe several algorithms satisfying the above definition. For details on the
derivation of the various conditions we refer to Engl et al. (1996) whereas the Lipschitz constant
can be directly evaluated as the maximum of the first derivative of gλ.

Tikhonov Regularization
We start our discussion reviewing Tikhonov regularization. In this case the regularization is
gλ(σ) = 1

σ+λ so that (10) and (11) hold with B = D = 1. Condition (12) is verified with
γν = 1 for 0 < ν ≤ 1 and hence the qualification equals to 1. A straightforward computation
shows that (13) holds with L = 1 and µ = 2. The algorithm amount to a matrix inversion
problem as can be seen from (5).

Landweber Iteration
Landweber iteration is characterized by

gt(σ) = τ

t−1∑
i=0

(1− τσ)i

where we identify λ = t−1, t ∈ IN and take τ = 1/κ2. In this case we have B = D = 1 and
the qualification is infinite since (12) holds with γν = 1 if 0 < ν ≤ 1 and γν = νν otherwise. A
simple computation shows that L = 1 and ν = 2. As shown in Yao et al. (2005) this method
corresponds to empirical risk minimization via gradient descent and τ determines the step-size.
Early stopping of the iterative procedure allows to avoid over-fitting so that the iteration number
plays the role of the regularization parameter. In Yao et al. (2005) the fixed step-size τ = 1/κ2

was shown to be the best choice among the variable step-size τ = 1
κ2(t+1)θ , with θ ∈ [0, 1).

This suggests that τ does not play any role for regularization. From the algorithmic point of
view we can rewrite the algorithm as the following iterative map

αi = αi−1 +
τ

n
(y −Kαi−1), i = 1, . . . , t

setting α0 = 0.
Semiiterative Regularization and the ν-method

An interesting class of algorithms are the so called semiiterative regularization or accelerated
Landweber iteration. This class of methods can be seen as a generalization of Landweber
iteration where the regularization is now

gt(σ) = pt(σ)
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with pt polynomial of degree t− 1. In this case we can identify λ = t−2, t ∈ IN and we assume
κ = 1 for simplicity. We have B = 2 and D = 1 and a directly application of Markov inequality
for polynomial of degree t shows L = 4 and µ = 4. The qualification of this class of method
is usually finite. An example which turns out to be particularly interesting is the so called
ν −method. We refer to Engl et al. (1996) for a derivation of this method. In the ν −method
the qualification is ν (fixed) with γν = c for some positive constant c. The algorithm amounts
to solving, for α0 = 0, the following map

αi = αi−1 + ui(αi−1 − αi−2) +
ωi

n
(y −Kαi−1), i = 1, . . . , t

where

ui =
(i− 1)(2i− 3)(2i + 2ν − 1)

(i + 2ν − 1)(2i + 4ν − 1)(2i + 2ν − 3)

ωi = 4
(2i + 2ν − 1)(i + ν − 1)
(i + 2ν − 1)(2i + 4ν − 1)

t > 1.

The interest of this method lies in the fact that since the regularization parameter here is λ = t−2

we just need the square root of the number of iterations needed by Landweber iteration. In
inverse problems this method proved to be extremely fast and is often used as valid alternative
to conjugate gradient (see Engl et al. (1996), Chapter 6 for details).

Iterated Tikhonov
As we have seen while discussing Tikhonov regularization such method has finite qualification
and this reflects in the impossibility to exploit the regularity of the solution beyond a certain
regularity level. To overcome this problems the following regularization can be considered

gλ,t(σ) =
(σ + λ)t − σt

λ(σ + λ)t

In this case we have D = 1 and B = t and the qualification of the method is now t with γν = 1.
A direct computation shows that L = t(2κ)t−1 and µ = 2t. The algorithm is described by the
following iterative map

(K + nλI)αi = y + nλαi−1 i = 1, . . . , t

choosing α0 = 0. It is easy to see that for t = 1 we simply recover the standard Tikhonov
regularization but as we let t > 0 we improve the qualification of the method. Moreover we
note that by fixing λ we can think of the above algorithms as an iterative regularization with t
regularization parameter.

3.2 Finite Sample Bounds for Regression and Classification

In this section we fix a regularization scheme gλ as in Definition 1 and we define the family of
algorithms

fλ
z =

n∑
i=1

αiK(x, xi) with α =
1
n

gλ(
K
n

)y (14)

parametrized by 0 < λ ≤ min{1, κ}. Recalling that κ2 = supx∈X K(x, x) and M = sup |y|,
the following result holds.
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Theorem 2 (Finite Sample Bounds) Suppose that fρ ∈ Ωr,R and r is smaller or equal than
the qualification of gλ. If we let β = max{1, 2µ} and choose

λn = n
− 1

2r+β (15)

then for 0 < η ≤ 1 the following inequality holds with probability at least 1− η

E(fλn
z )− E(fρ) ≤ log

4
η
(2C2

1 + 2γ2
rR2)n−

2r
2r+β (16)

where C1 = 4
√

2κM
(√

DB + κ
5
2 L

)
.

We postpone the proof to Section 5 and add some remarks and corollaries.
For essentially all the methods discussed in Section 3 we have µ = 2, so that our analysis

give a bound of order n−
2r

2r+4 . For example if we just know that fρ ∈ H then r = 1/2 and we
have a bound of order n−1/5, clearly if r and the qualification of the method are sufficiently big
the rate can be close to 1/n. For some regularization algorithms better results than the those

presented here are available. For example for Tikhonov regularization bounds of order n−
2r

2r+1

where proved in Smale and Zhou (2005) and improved in Caponnetto and De Vito (2005) if
more information on the structure of the kernel is available. Anyway since this method has
finite qualification the results does not improve if r > 1. For Landweber iteration bounds of

order n−
2r

2r+3 , r > 0, where proved in Yao et al. (2005). These results require ad hoc proofs
for each algorithm. Here we trade-off generality with the quality of the rates. Our main goal is
not finding the best achievable bounds but giving a set of sufficient conditions which allows to
derive finite sample bounds for a broad class of algorithms with a relatively simple proof. Up-to
our knowledge iterated Tikhonov regularization as well as the class of semiiterative methods are
not used in learning. We also note that the above result shows a data independent choice of
the regularization parameter. As usual such a choice requires the knowledge of the regularity of
the solution so that a data dependent choice would be preferable. In practice selection of the
regularization parameter minimizing some validation or cross validation error can be considered.

Consistency for the class of considered algorithms easily follows as a corollary.

Corollary 3 (Consistency) Under the same assumptions of Theorem 2 let M(Ωr,R) the set of
all Borel probability measure on Z such that fρ ∈ Ωr,R. then

lim
τ→∞

lim sup
n→∞

sup
ρ∈M(Ωr,R)

P
[
E(fλn

z )− E(fρ) > τn
− 2r

2r+β

]
= 0.

The above results have a direct application if we consider classification, that is Y = {−1, 1}
(Bousquet et al., 2004). In this case we consider signfλ

z as our decision rule and the error
measures is usually the misclassification risk defined as

R(f) = P [ (x, y) ∈ X × Y : signf(x) 6= y] ,

whose minimizer is the Bayes rule signfρ (Devroye et al., 1996). A straightforward result can
be obtained recalling that the following relation between the risk and the expected error (with
respect to the square loss)

R(f)−R(fρ) ≤
√
E(f)− E(fρ).
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see (Bartlett et al., 2003). Anyway such a result can be improved if some more information on
the problem is available. To this aim it is interesting to consider Tsybakov noise condition

P [ x ∈ X : |fρ(x)| ≤ L] ≤ BqL
q, ∀L ∈ [0, 1], (17)

where q ∈ [0,∞] (Tsybakov, 2004). The meaning of such a condition is better understood
noting that fρ(x) = 2ρ(1|x) − 1 so that if q goes to ∞ the problem is separable (realizable
setting). In this case the following comparison result is available

R(f)−R(fρ) ≤ 4cα (E(f)− E(fρ))
1

2−α (18)

with α = q
q+1 and cα = Bq + 1, see Bartlett et al. (2003) or Yao et al. (2005). The following

corollary is straightforward.

Corollary 4 (Bayes Consistency) Under the same assumptions of Theorem 2 assume that
Tsybakov noise condition holds. If we choose λn according to (15) and use signfλn

z as our
decision rule then the following bound holds with probability at least 1− η

R(fλn
z )−R(fρ) ≤ C(H, η, ρ)n−

2r
(2r+β)(2−α)

where C(H, η, ρ) = 4cα(log 4
η (2C2

1 + 2γ2
rR2))

1
2−α with cα as in (18) and C1 given in Theorem

2.

4. Regularization Operators, an Inverse Problems Perspective

In this section we clarify the role of the regularization looking at learning algorithm as an inverse
problem as showed in De Vito et al. (2005b). For backgrounds and details on inverse problems
we refer to (Tikhonov and Arsenin, 1977, Engl et al., 1996, Bertero and Boccacci, 1998).

In the framework of learning, if an hypothesis space H is given, the ideal estimator is the
solution of the minimization problem

inf
f∈H

E(f) = inf
f∈H

‖IKf − fρ‖2
ρ + E(fρ). (19)

The above equality is a consequence of (1) and we have stressed the fact that f is an element
of H, but its relevant norm is the norm in L2(X, ρX), writing explicitly the inclusion operator
IK : H → L2(X, ρX). We notice that the action of IK is trivial since it maps f into itself, but
the norm changes from ‖·‖H to ‖·‖ρ.
It follows that (19) is equivalent to the least square problem associated to the linear inverse
problem

IKf = fρ. (20)

In a similar way, given a training set z = (x,y), we have that

min
f∈H

1
n

n∑
i=1

(f(xi)− yi)2 = min
f∈H

‖Sxf − y‖2
n , (21)

where ‖·‖n is 1/n times the euclidean norm in IRn and Sx : H → IRn is the sampling operator

(Sxf)i = f(xi).

12



Again we can see that empirical risk minimization is the least square problem associated to the
linear inverse problem

Sxf = y (22)

(here we recover the problem of approximating a function from finite data, that is finding f
such that f(xi) = yi with i = 1, .., n).

A simple calculation shows that the least square solutions of (19) and (21) are solutions of
the following linear equations

I∗KIKf = I∗Kfρ (23)

and
S∗xSxf = S∗xy. (24)

Notice that in the above formulation I∗KIK and S∗xSx are operators from H to H, whereas
I∗Kfρ and S∗xy are elements of H. Moreover, if the number n of data goes to infinity, as
a consequence of the law of large numbers, S∗xSx and Sxy converge to I∗KIK and I∗Kfρ,
respectively (see Lemma 5 below). However, since I∗KIK is a compact operator, in general
the (Moore-Penrose) inverse of I∗KIK is not continuous and, hence, the solution of (24) does
not converge to the solution of (23), which is simply fρ in the present framework (under the
assumption that H is dense in L2(X, ρX)).

The key idea of inverse problems is to regularize (23) by considering a family of regularized
solutions

gλ(I∗KIK)I∗Kfρ (25)

depending of a positive parameter λ in such a way that

1. gλ(σ) is bounded for σ in [0, κ2], so the spectral theorem ensures that gλ(I∗KIK) is
bounded, too;

2. gλ(σ) approximates the function 1
σ as λ goes to 0, that is, gλ(I∗KIK) is a family of

operators approximating the inverse of I∗KIK when λ goes to 0. This allows recovering
the exact solution fρ in the limit.

Moreover in learning we also require gλ(σ) to be a Lipschitz function of σ, so that the discretized
solution

gλ(S∗xSx)S∗xy

converges to gλ(I∗KIK)I∗Kfρ for n going to infinity and given λ. Within this setting the final
step of the regularization procedure is the choice of the regularization parameter λ = λn as a
function of n so that gλn(S∗xSx)S∗xy converges to fρ.

We end the section with a remark about the notion of convergence we are interested into.
Usually in the framework of inverse problems the convergence is considered with respect to the
norm in H (reconstruction error), so that it is necessary to require the existence of at least
a solution of (23), namely the Moore-Penrose solution. In learning theory we are interested
into convergence in L2(X, ρX)-norm (residual), hence we do not require the existence of the
Moore-Penrose solution, which in our context is equivalent to the assumption that fρ ∈ H.
Moreover, since both Sx and y are random variables, the convergence has to be understood in
probability or in expectation.

13



5. Error Estimates and Proof of the Main Result

In this section we prove the main results of the paper stated in Section 3. The idea is to show
that error of the estimator, for a fixed value of the regularization parameter, can be suitably
decomposed in a probabilistic term, sample error, and a deterministic term, approximation error.
If explicit bounds on the two terms are available we can find the value of the regularization
parameter which solve the bias-variance trade-off, that is the value of λ balancing out the
sample and approximation errors. Most of this section is devoted to prove such bounds. Before
actually proving such results it is convenient to define some operators on the RKHS H.

5.1 Sampling and Covariance Operators

We recall that the main intuition behind the considered class of algorithm is that they ensure
stability with respect to the random sampling. In particular we regarded the sample case, that is
y and K, as a perturbation of the population case, that is of fρ and LK . To give a formal proof
to the above intuition we would like to give a quantitative measure of the discrepancy between
the sample and population case. Rather than comparing K and LK it is useful to define the
following operators. For details we refer to Carmeli et al. (2005).
We let IK : H → L2(X, ρX) be the inclusion operator, which is continuous by (2), I∗K :
L2(X, ρX) → H the adjoint operator and T := I∗KIK : H → H the covariance operator. It can
be proved that LK = IKI∗K and

T =
∫

X
〈·,Kx〉HKxdρX(x).

Since the kernel is bounded and positive definite, both LK and T are trace class positive operator
and there is a sequence of vectors (ei)i≥1 in H and a sequence of numbers (σi)i≥1 (possibly
finite) such that

Tf =
∑
i=1

σi 〈f, ei〉H ei 〈ei, ej〉H = δij

∑
i

σi ≤ κ2 σi+1 ≥ σi > 0

for all f ∈ H and, letting ui = 1√
σi

ei ∈ L2(X, ρX)

LKf =
n∑

i=1

σi 〈f, ui〉ρ ui 〈ui, uj〉ρ = δij .

In particular, ‖LK‖L(L2(X,ρX)) = ‖T‖L(H) ≤
∑

i σi ≤ κ2.
Let now x = (xi)n

i=1 with xi ∈ X, we define the sampling operator Sx : H → IRn as

(Sxf)i = f(xi) = 〈f,Kxi〉H i = 1, . . . , n,

where the norm ‖·‖n in IRn is 1/n times the euclidean norm, and the empirical covariance
operator Tx : H → H as Tx := S∗xSx. It can be proved that

Tx :=
1
n

n∑
i=1

〈·,Kxi〉HKxi .

14



and SxS∗x = 1/nK. Clearly Tx is a positive operator with finite rank (hence it is a trace class
operator) and ‖Tx‖L(H) ≤ κ2.

The above operators allow to write fλ and fλ
z in a suitable form, that is,

fλ = gλ(T )I∗Kfρ fλ
z = gλ(Tx)S∗xy. (26)

where both fλ and fλ
z are regarded as elements of H.

Now we can look at Tx and S∗xy as approximation of T and I∗Kfρ respectively. The advantage
is that we are now dealing with operators acting on H and functions in H which can be more
easily compared.

To prove the main error estimates in next Section we recall some facts. Due to the assump-
tion that H is dense, the best model f †H exists if and only if fρ is an element of H, so that
IKfH = fρ. Moreover it is easy to see that we can relate the norm in H and L2(X, ρX) by
means of the operator T . For f ∈ H we can write explicitly the embedding operator IK to get

‖IKf‖ρ =
∥∥∥√Tf

∥∥∥
H

. (27)

This fact can be easily proved recalling that the inclusion operator is continuous and hence
admits a polar decomposition IK = U

√
T , where U is a partial isometry (Rudin, 1991).

Finally for sake of completeness we show how (7) and (26) are related. To this aim we recall
that by polar decomposition the following equalities hold Sx =

√
1/nKU∗x, S∗x = Ux

√
1/nK

and clearly Tx = Ux1/nKU∗x. Then we can write

fλ
z = gλ(Tx)S∗xy = Uxgλ(

1
n
K)

√
1
n
Ky (28)

where we used U∗xUx is the identity on the range of K. From the above formula we immediately
see that fλ

z is an element of the range of Ux, which is the linear span of the vectors Kxi . Hence
fλ
z =

∑n
i=1 αiKxi and, if we apply the sampling operator on both sides of (28), we get

Sxfλ
z = Sx

n∑
i=1

αiKxi = Kα

where α denotes the vector of the coefficients and

SxUxgλ(
1
n
K)

√
1
n
Ky =

√
1
n
Kgλ(

1
n
K)

√
1
n
Ky.

Then the following equality holds

Kα =
1
n
Kgλ(

1
n
K)y.

5.2 Approximation and Sample Error

We can now derive the error estimates which are the key to the prove of Theorem 2. The
bias-variance problem follows considering, for fixed λ, the following error decomposition√

E(fλ
z )− E(fρ) ≤

∥∥∥fλ
z − fλ

∥∥∥
ρ
+

∥∥∥fλ − fρ

∥∥∥
ρ

(29)
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where we used (1) and triangle inequality. In this case one term
∥∥fλ

z − fλ
∥∥

ρ
accounts for the

presence of a perturbation (sample or estimation error) whereas the other term
∥∥fλ − fρ

∥∥
ρ

accounts for the fact that, though considering the unperturbed problem, we are limiting the
approximation property of our algorithm by fixing λ (approximation error).

If the best in the model f †H exists besides the expected error we can also consider the error
measured with respect to the norm in the RKHS H. This can be interesting since convergence
in H-norm implies point-wise convergence and moreover by choosing different kernels we might
get convergence in different norms (for example Sobolev norms). In this case the decomposition
is simply ∥∥∥fλ

z − f †H

∥∥∥
H
≤

∥∥∥fλ
z − fλ

∥∥∥
H

+
∥∥∥fλ − f †H

∥∥∥
H

.

We first consider the estimation error. Our approach is divided into two steps. Recalling (26)
we prove analytically that that the difference fλ − fλ

z can be expressed in terms of the pertur-
bation measures T − Tx and I∗Kfρ − S∗xy. Then we need to to give probabilistic estimates for
such perturbation measures. For the latter we make use of the following result from De Vito
et al. (2005a) based on concentration of Hilbert space valued random variables (Pinelis and
Sakhanenko, 1985).

Lemma 5 Let κ = supx∈X ‖Kx‖H, M = supy∈Y |y|. For n ∈ IN and 0 < η ≤ 1 the following
inequalities hold with probability at least 1− η

‖I∗Kfρ − S∗xy‖H ≤ δ1(n, η), δ1(n, η) =
2
√

2κM√
n

√
log

4
η

‖T − Tx‖L(H) ≤ δ2(n, η), δ2(n, η) =
2
√

2κ2

√
n

√
log

4
η
. (30)

We are now ready to derive our estimates for the sample error. The following result is a natural
generalization of Theorem 1 in De Vito et al. (2005b) (see also Theorems 4.2 in Engl et al.
(1996)).

Theorem 6 (Estimation Error) Let gλ as in Definition 1 and fλ
z , fλ as defined in (26), with

0 < λ ≤ 1. Moreover recall κ2 = supx∈X K(x, x) and M = sup |y|. Then for n ∈ IN and
0 < η ≤ 1 the following inequality holds with probability at least 1− η∥∥∥fλ

z − fλ
∥∥∥

ρ
≤ C1

1
λθ
√

n

√
log

4
η

(31)

where C1 = 4
√

2κM
(√

DB + κ
5
2 L

)
and θ = max{1/2, µ}.

Moreover with probability at least 1− η∥∥∥fλ
z − fλ

∥∥∥
H
≤ C2

1
λγ
√

n
log

4
η

(32)

where C2 = 4
√

2κM
(
B + κ2L

)
and γ = max{1, µ}.
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Proof The prove of the two bounds is essentially the same. We consider the following decom-
position

fλ
z − fλ = gλ(Tx)S∗xy − gλ(T )I∗Kfρ (33)

= (gλ(Tx)− gλ(T ))S∗xy + gλ(T )(S∗xy − I∗Kfρ).

The bound in the H-norm follows from triangle inequality, in fact from Conditions (11) and
(13) and spectral theorem (Lang, 1993) we get∥∥∥fλ

z − fλ
∥∥∥
H
≤ κML

λµ
‖T − Tx‖+

B

λ
‖S∗xy − I∗Kfρ‖H (34)

where we used ‖S∗xy‖H = ‖1/n
∑n

i=1 kxiyi‖H ≤ κM .
For the bound on the expected error we recall that using (27) we can write∥∥∥fλ

z − fλ
∥∥∥

ρ
=

∥∥∥√T (fλ
z − fλ)

∥∥∥
H

where we omit writing explicitly IK . Moreover we have that∥∥∥√Tgλ(T )
∥∥∥
L(H)

≤
√

BD

λ

in fact Conditions (10), (11) and spectral theorem ensure that ∀f ∈ H∥∥∥√Tgλ(T )f
∥∥∥2

H
=

=
〈√

Tgλ(T )f,
√

Tgλ(T )f
〉

= 〈gλ(T )f, Tgλ(T )f〉H

≤ ‖gλ(T )f‖H ‖Tgλ(T )f‖H ≤ B

λ
D ‖f‖2

H .

The following estimate for the sample error follows∥∥∥fλ
z − fλ

∥∥∥
ρ
≤ κ2ML

λµ
‖T − Tx‖+

√
DB√
λ

‖S∗xy − I∗Kfρ‖H (35)

where we used
√

T ≤ κ. To finish the proof we simply have to plug the probabilistic estimates
of Lemma 5 into (34) and (35).

Remark 7 The condition λ < 1 is considered only to simplify the results and can be replaced
by λ < a for some positive constant a that would eventually appear in the bound.

Remark 8 Inspecting the proof of the above theorem we see that the set of ”good” training
sets such that the above bound holds does not depend on λ so that the bound still holds if we
take λ = λ(z). This might be helpful while looking for a data-dependent parameter choice.
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Next theorem consider the approximation error. It can be proved by means of minor modi-
fication from standard results in inverse problem. In fact its proof can be directly derived from
Theorem 4.3 in Engl et al. (1996).

Theorem 9 (Approximation Error) Let gλ as in Definition 1, fλ as defined in (26). If fρ ∈
Ωr,R and r is smaller then the qualification of gλ then∥∥∥fλ − fρ

∥∥∥
ρ
≤ γrRλr. (36)

If r > 1/2, then f †H exists and ∥∥∥fλ − f †H

∥∥∥
H
≤ γcRλc (37)

where c = r − 1/2.

Proof We recall that

E(fλ)− E(fρ) =
∥∥∥fρ − IKfλ

∥∥∥2

ρ
,

where we wrote explicitly the embedding operator IK since fλ belongs to H, and we also recall
the following useful inequality

gλ(I∗KIK)I∗K = I∗Kgλ(IKI∗K).

Since fρ ∈ Ωr,R (and LK = IKI∗K) we can write

‖fρ − IKfλ‖ρ = ‖fρ − IKgλ(I∗KIK)I∗Kfρ‖ = ‖(I − LKgλ(LK))Lr
Ku‖ . (38)

Then Condition(12) ensures that the inequality∥∥∥fλ − fρ

∥∥∥
ρ
≤ γrλ

r

holds true if r is smaller or equal then the qualification of gλ.
Finally (37) can be proved recalling that each bounded operator admits a polar decomposition

A = U |A|, where U is a partial isometry and |A| is the positive square root of A∗A (Rudin,

1991). If we let I∗K = U(IKI∗K)
1
2 be the polar decomposition of I∗K , then for r > 1/2

fρ = (IKI∗K)rφ = (IKI∗K)1/2(IKI∗K)cφ = (IKI∗K)1/2U∗U(IKI∗K)cU∗Uφ = IK(T )cUφ,

where c = r − 1/2. It follows that Pfρ ∈ Im(IK), so that f †H exists and since Pfρ = IKf †H
clearly fH = (T )cUφ. Now we can mimic the proof of the first bound and using Tf †H = I∗Kfρ

we can write

f †H − fλ = (I − gλ(I∗KIK)T )f †H = (I − gλ(I∗KIK)T )(T )cUφ

If we take the norm of the above expression Condition (12) in Def.(1) and spectral theorem
ensures that ∥∥∥f †H − fλ

∥∥∥
H
≤ γcλ

cR
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where we used the fact that ‖Uφ‖H = ‖φ‖ρ since U is a partial isometry.

The proof of Theorem 2 and the corollaries are straightforward.
Proof [Finite sample bounds] We simply plug the above estimates into the following inequality

E(fλ
z )− E(fρ) ≤ 2

∥∥∥fλ
z − fλ

∥∥∥2

ρ
+ 2

∥∥∥fλ − fρ

∥∥∥2

ρ
.

The proof follows taking the value of λ balancing out the two terms that is the value such that

λ2r =
1

λβn

where β = max{1, 2µ}.

Remark 10 Clearly we can easily get a similar results for the estimates in H. Interestingly it
turns out that the parameter choice does not change.

Finally we can prove consistency.
Proof [Consistency] We let τ = (2C2

1 + 2γ2
r ) log 4

η and solve with respect to η to get

ητ = 4e
− τ

2C2
1+2γ2

r .

Then we know from Theorem 2 that

P
[
E(fλn

z )− E(fρ) > τn
2r

2r+β

]
≤ ητ

and clearly

lim sup
n→∞

sup
ρ∈M(Ωr,R)

P
[
E(fλn

z )− E(fρ) > τn
2r

2r+β

]
≤ ητ .

The theorem is proved since ητ → 0 as τ →∞.

6. Conclusions

In this paper we build upon the mathematical relation between inverse problems and learning
theory. It is well known that Tikhonov regularization can be profitably used for learning and
enjoys good theoretical properties. In our analysis we show that a large number of algorithms
well known to the inverse problems community can be casted in the learning framework. All
these algorithms are kernel methods easy to implement and their theoretical properties can be
derived by adapting standard results of regularization theory. Our analysis confirms the deep
connection between learning and inverse problems.

Current work concentrates on assessing strengths and weaknesses of these new learning
algorithms in real applications. From a more theoretical viewpoint we aim to improve the
probabilistic bounds (Bauer et al., 2005). Finally, we are studying the extension of the presented
analysis to the case of other regularization principles like sparsity enhancing regularization and
regularization with differential operators.
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