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Abstract

We discuss how a large class of regularization methods, collectively

known as spectral regularization and originally designed for solving ill-

posed inverse problems, gives rise to regularized learning algorithms.

All these algorithms are consistent kernel methods which can be easily

implemented. The intuition behind their derivation is that the same

principle allowing to numerically stabilize a matrix inversion problem
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is crucial to avoid over-fitting. The various methods have a common

derivation, but different computational and theoretical properties. We

describe examples of such algorithms, analyzing their classification

performance on several datasets and discussing their applicability to

real world problems.

1 Introduction

A large amount of literature had pointed out the connection between algo-

rithms in learning theory and regularization methods in inverse problems,

see for example (V. Vapnik, 1982; Poggio & Girosi, 1992; V. N. Vapnik,

1998; Evgeniou, Pontil, & Poggio, 2000; T. Hastie, Tibshirani, & Friedman,

2001; Schölkopf & Smola, 2002; De Vito, Rosasco, Caponnetto, De Giovan-

nini, & Odone, 2005). The main message is that regularization techniques

provide stability with respect to noise and sampling, therefore ensuring good

generalization properties to the corresponding learning algorithms. Usually,

regularization in learning is based on the minimization of a functional in a

suitable hypothesis space - for example, the penalized empirical error on a re-

producing kernel Hilbert space. Hence theoretical analysis mainly focuses on

the choice of the loss function, the penalty term and the kernel (V. N. Vapnik,
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1998; Evgeniou et al., 2000; Schölkopf & Smola, 2002; T. Hastie et al., 2001).

From the seminal work of Tikhonov and others (Tikhonov & Arsenin,

1977) regularization has been rigorously defined in the theory of ill-posed in-

verse problems. In this context the problem is to invert a linear operator (or

a matrix) that might have unbounded inverse (or a bad condition number).

Regularization amounts to replace the original operator with a bounded op-

erator, namely the regularization operator (Engl, Hanke, & Neubauer, 1996),

whose condition number is controlled by a regularization parameter. The

regularization parameter should be chosen according to the noise level in or-

der to ensure stability. Many regularization algorithms are known, Tikhonov

and truncated singular value decomposition (TSVD) being probably the most

commonly used.

As discussed in (Bertero & Boccacci, 1998) one can also regard regular-

ization from a signal processing perspective introducing the notion of filter.

This last point of view gives a way to look constructively at regularization,

indeed each regularization operator can be defined using spectral calculus as

a suitable filter on the eigendecomposition of the operator defining the prob-

lem. The filter is designed to suppress the oscillatory behavior corresponding
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to small eigenvalues. In this view it is known, for example, that Tikhonov

regularization can be related to Wiener filter (Bertero & Boccacci, 1998).

As we mentioned, regularization has a long history in learning and our

starting point is the theoretical analysis proposed in (Bauer, Pereverzev, ,

& Rosasco, 2006; De Vito, Rosasco, & Verri, 2005; Caponnetto & De Vito,

2006; Caponnetto, 2006) showing that many regularization methods origi-

nally proposed in the context of inverse problems give rise to consistent ker-

nel methods with optimal minimax learning rates. The analysis we propose

in this paper focuses on three points.

First, differently from (Bauer et al., 2006), we propose a more intuitive

derivation of regularization based on the notion of spectral filter. We start

introducing the notion of filter functions and explain why, besides ensuring

numerical stability, they can also provide a way to learn with generalization

guarantees. This requires, in particular, to discuss the interplay between

filtering and random sampling. Our analysis is complementary to the the-

ory developed in (Bauer et al., 2006; De Vito, Rosasco, & Verri, 2005; Yao,

Rosasco, & Caponnetto, 2007; Caponnetto, 2006). Note that the fact that

algorithms ensuring numerical stability can also learn is not obvious but con-

firms the deep connection between stability and generalization (see (Bousquet
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& Elisseeff, 2002; Poggio, Rifkin, Mukherjee, & Niyogi, 2004) and (Rakhlin,

Mukherjee, & Poggio, 2005) for references).

Second, we present and discuss several example of filters inducing spectral

algorithms for supervised learning. The filter function perspective provides a

unifying framework for discussing similarities and differences between the var-

ious methods. Some of these algorithms, such as the ν-method and iterated

Tikhonov, are new to learning. Other algorithms are well known: spectral

cut-off (TSVD) is related to Principal Component Regression (PCR) and

its kernel version; Landweber iteration is known as L2-boosting (Bühlmann

& Yu, 2002) and Tikhonov regularization is also known as regularized least

squares or ridge regression. Our analysis highlights the common regular-

ization principle underlying algorithms originally motivated by seemingly

unrelated ideas: penalized empirical risk minimization – like the regularized

least-squares, early stopping of iterative procedures – like the gradient descent,

and (kernel) dimensionality reduction methods – like (kernel) Principal Com-

ponent Analysis.

Despite these similarities, spectral algorithms have differences from both the

computational and theoretical point of view. One of the main difference re-

gards the so called saturation effect affecting some regularization schemes.
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This phenomenon, which is well known in inverse problem theory, amounts

to the impossibility, for some algorithms, to exploit the regularity of the tar-

get function beyond a certain critical value, referred to as the qualification

of the method. We try to shed light on this aspect, which is usually not

discussed in literature of learning rates, via some theoretical considerations

and numerical simulations.

Another point that differentiates spectral algorithms concerns algorithmic

complexity. An interesting aspect is the built-in property of iterative meth-

ods to recover solutions corresponding to the whole regularization path (S.

Hastie T. andRosset, Tibshirani, & Zhu, 2004).

Third, we evaluate the effectiveness of the proposed algorithms in learn-

ing tasks via an extensive experimental study. The performance of these

spectral algorithms against state-of-the-art techniques, such as SVMs, is as-

sessed on various datasets. Interestingly, algorithms the implementation of

which amounts to few lines of code match (and sometime improve) state-of

the art results and have interesting computational properties. Optimization

issues that might be interesting starting point for future work are beyond

the scope of this research (see the recent work (Li, Lee, & Leung, 2007) for

appropriate references).
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The plan of the paper is the following. Section 2 discusses previous work

in the context of filtering and learning, Section 3 reviews the regularized

least-squares algorithm from a filter function perspective, while Section 4 is

devoted to extending the filter point of view to a large class kernel methods.

In Section 5 we give several examples of such algorithms and we discuss their

properties and complexity in Section 6. Section 7 reports results obtained

with an experimental analysis on various datasets, while Section 8 is left to

a final discussion.

2 Previous Works on Learning, Regulariza-

tion and Spectral Filtering

The idea of using regularization in statistics and machine learning has been

explored since a long time - see for example (Wahba, 1990; Poggio & Girosi,

1992) and references therein - and the connection between large margin kernel

methods such as Support Vector Machines and regularization is well known –

see (V. N. Vapnik, 1998; Evgeniou et al., 2000; Schölkopf & Smola, 2002) and

reference therein. Ideas coming from inverse problems regarded mostly the

use of Tikhonov regularization and were extended to several error measures
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other then the quadratic loss function. The gradient descent learning algo-

rithm in (Yao et al., 2007) can be seen as an instance of Landweber iteration

(Engl et al., 1996) and is related to the L2 boosting algorithm (Bühlmann &

Yu, 2002). For iterative methods some partial results, which do not take into

account the random sampling, are presented in (Ong & Canu, 2004; Ong,

X., Canu, & Smola, 2004). The interplay between ill-posedness, stability and

generalization is not new to learning (Poggio & Girosi, 1992; Evgeniou et al.,

2000; Bousquet & Elisseeff, 2002; Rakhlin et al., 2005; Poggio et al., 2004;

De Vito, Rosasco, Caponnetto, et al., 2005).

The notion of filter function was previously studied in machine learning

and gives a connection to the literature of function approximation in signal

processing and approximation theory. The pioneering work of (Poggio &

Girosi, 1992) established the relation between neural networks, radial basis

functions and regularization. Though the notion of reproducing kernel is not

explicitly advocated, Green functions of second order differential operator

are used to define penalties for penalized empirical risk minimization. Fil-

tering and reweighing of the Fourier transform of Green functions are used

de facto to design new kernels (see also for the relation between kernel and

penalty term in Tikhonov regularization). The aforementioned paper, as
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well as (Girosi, Jones, & Poggio, 1995) are suitable sources for references

and discussions. An important aspect that we would like to stress is that,

from a technical point of view, these works (implicitly) assume the data to

be sampled according to a uniform distribution and make an extensive use of

Fourier theory. Indeed the extension to general probability distribution is not

straightforward and this is crucial since it is standard in learning theory to

assume the point to be drawn according to a general, unknown distribution.

A mathematical connection between sampling theory and learning theory has

been recently proposed in (Smale & Zhou, 2004, 2005b) whereas (De Vito,

Rosasco, Caponnetto, et al., 2005; De Vito, Rosasco, & Caponnetto, 2006)

gave an inverse problem perspective on learning. The analysis we present

can be seen as a further step towards a deeper understanding of learning as

a function approximation problem.

Recently, filtering of the kernel matrix have been considered in the context

of graph regularization – see (T. Hastie et al., 2001; Chapelle, Weston, &

Scholkopf, 2003; Zhu, Kandola, Ghahramani, , & Lafferty, 2005; Smola &

Kondor, 2003; Zhang & Ando, 2006). In this case reweighing of a kernel

matrix (filters) on a set of labeled and unlabeled input points is used to define

new penalty terms replacing the square of the norm in the adopted hypothesis
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space. It has been shown – see for example (Zhang & Ando, 2006) – that

this is equivalent to standard regularized least square with data dependent

kernels. Note that in graph regularization no sampling is considered and the

problem is truly a problem of transductive learning.

Our analysis relies on a different use of filter functions to define new

algorithms rather the new kernels. In fact in our setting the kernel is fixed

and each rescaling of the kernel matrix leads to a learning algorithm which

is not necessarily a penalized minimization. The dependency of the rescaling

on the regularization parameter allows us to derive consistency results in a

natural way.

3 Regularized Least-Squares as a Spectral Fil-

ter

In this section we review how the generalization property of the regularized

least-squares algorithm is a consequence of the algorithm being seen as a

filter on the eigenvalues of the kernel matrix. This point of view naturally

suggests a new class of learning algorithms defined in terms of filter functions,

the properties of which are discussed in the next section.
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In the framework of supervised learning, the regularized least-squares

algorithm is based on the choice of a Mercer kernel1 K(x, t) on the input

space X and of a regularization parameter λ > 0. Hence, for each training

set z = (x,y) = {(x1, y1), · · · , (xn, yn)} of n-examples (xi, yi) ∈ X × R,

regularized least squares amounts to

fλz (x) =
n∑
i=1

αiK(x, xi) with α = (K + nλI)−1y. (1)

where K is the n× n-matrix (K)ij = K(xi, xj).

Since λ > 0, it is clear that we are numerically stabilizing a matrix inversion

problem which is possibly ill-conditioned (that is numerically unstable). Be-

fore showing that regularized least squares can be seen as a suitable filtering

of the kernel matrix, able to to ensure goog generalization properties of the

estimator, we first need to recall some basic concepts of learning theory.

We assume that the examples (xi, yi) are drawn identically and indepen-

dently distributed according to an unknown probability measure ρ(x, y) =

ρ(y|x)ρX(x). Moreover, we assume that X is a compact subset of Rd, and

the labels yi belong into a bounded subset Y ⊂ R (for example in a binary

1This means that K : X×X → R is a symmetric continuous function, which is positive
definite (Aronszajn, 1950).
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classification problem Y = {−1, 1}). Finally, we assume that the kernel K is

bounded by 1 and is universal (see (Micchelli, Xu, & H., 2006)and references

therein), that is the set of functions

H = {
N∑
i=1

αiK(x, xi) | xi ∈ X, αi ∈ R}

is dense in L2(X), the Hilbert space of functions that are square-integrable

with respect to ρX .

With the choice of the square loss, the generalization property of the estima-

tor means that the estimator fλz is a good approximation of the regression

function

fρ(x) =

∫
Y

y dρ(y|x),

with respect to the norm of L2(X). In particular the algorithm is (weakly)

consistent (V. N. Vapnik, 1998) if, for a suitable choice of the parameter

λ = λn as a function of the examples,

lim
n→∞

∫
X

(fλz (x)− fρ(x))2 dρX(x) = lim
n→∞

∥∥fλz − fρ∥∥2

ρ
= 0

with high probability – see for example (V. N. Vapnik, 1998).
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Notice that, in classification, the goal is to approximate the Bayes rule

sign(fρ) =sign(ρ(1|x)−1/2) with the plug-in estimator sign(fλz ) with respect

to the classification error R(fλz ) = P (yfλz (x) < 0). In any case the following

bound holds

R(fλz )−R(fρ) ≤
∥∥fλz − fρ∥∥ρ , (2)

see for example (Bartlett, Jordan, & McAuliffe, 2006), so in the following

discussion we only consider the square loss.

We start re-writing the equation (1) in a slightly different way

(fλz (x1), . . . , fλz (xn)) =
K

n
(
K

n
+ λ)−1y. (3)

Observe that, if v is an eigenvector of K/n with eigenvalue σ, then we have

K
n

(K
n

+ λ)−1v = σ
σ+λ

v, so that the regularized least-squares algorithm is in

fact a filter on the eigenvalues of the kernel matrix.

The filter σ
σ+λ

not only ensures numerical stability, but also the generalization

properties of the estimator. To obtain a deep insight on this point, consider

the population case when we have knowledge of the probability distribution

ρ generating the data. In this setting, the kernel matrix K/n is replaced by
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the integral operator LK with kernel K

LKf(x) =

∫
X

K(x, s) f(s)dρX(s) f ∈ L2(X), (4)

the data y is replaced by the regression function fρ, so that (3) becomes

fλ = LK(LK + λI)−1fρ. (5)

More explicitly, since LK is a positive compact operator bounded by 1 and

H is dense in L2(X), there is basis (ui)i≥1 in L2(X) such that LKui = σiui

with 0 < σi ≤ 1 and limi→∞ σi = 0. Hence

fρ =
∞∑
i=1

〈fρ, ui〉ρ ui

fλ =
∞∑
i=1

σi
σi + λ

〈fρ, ui〉ρ ui.

By comparing the two equations, one has that fλ is a good approximation

of fρ, provided that λ is small enough. For such λ, the filter σ
σ+λ

selects

only the components of the fρ corresponding to large eigenvalues, which are

a finite number since the sequence of eigenvalues goes to zero. Hence, if we

slightly perturb both LK and fρ, the corresponding solution of (4) is close
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to fρ, provided that the perturbation is small. The key idea is that now

we can regard the sample case K, y and the corresponding estimator fλz , as

perturbation of LK , fρ and fλ, respectively. A mathematical proof of the

above intuition requires some work and we refer to (De Vito, Rosasco, &

Verri, 2005; Bauer et al., 2006) for the technical details. The basic idea is

that law of large numbers ensures that the perturbation is small, provided

that the number of example is large enough and, as a consequence, fλz is close

to fλ and, hence, to fρ.

The above discussion suggests that one can replace σ
σ+λ

with other func-

tions σgλ(σ) which are filters on the eigenvalues of LK and obtain different

regularization algorithms, as shown in the next section.

4 Kernel Methods from Spectral Filtering

In this section we discuss the properties of kernel methods based on spectral

filtering. Our approach is inspired by inverse problems. A complete theoret-

ical discussion of our approach can be found in (De Vito, Rosasco, & Verri,

2005; Bauer et al., 2006; Caponnetto, 2006).

Let K be a Mercer kernel as in the above section, by looking at (1), this
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suggests to define a new class of learning algorithm by letting

fλz =
n∑
i=1

αiK(x, xi) with α =
1

n
gλ(

K

n
)y, (6)

where gλ : [0, 1]→ R is a suitable function and gλ(
K
n

) is defined by spectral

calculus, that is, if v is an eigenvector of K/n with eigenvalue σ (since K

is a Mercer kernel bounded by 1, 0 ≤ σ ≤ 1), then gλ(
K
n

)v = gλ(σ)v. In

particular, on the given data, one has

(fλz (x1), . . . , fλz (xn)) =
K

n
gλ(

K

n
)y. (7)

We note that, unlike regularized least squares, such an estimator is not nec-

essarily the solution of penalized empirical minimization. Clearly, to ensure

both numerical stability as well as consistency, we need to make some as-

sumptions on gλ. Following (De Vito, Rosasco, & Verri, 2005; Bauer et al.,

2006) we say that a function gλ : [0, 1] → R parameterized by 0 < λ ≤ 1 is

an admissible filter function if:

1. There exists a constant B such that

sup
0<σ≤1

|gλ(σ)| ≤ B

λ
∀λ ∈ [0, 1]. (8)
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2. There exists a constant D such that

lim
λ→0

σgλ(σ) = 1 ∀σ ∈]0, 1] (9)

sup
0<σ≤1

|σgλ(σ)| ≤ D ∀λ ∈ [0, 1].

3. There is a constant ν > 0, namely the qualification of the regularization

gλ such that

sup
0<σ≤1

|1− gλ(σ)σ|σν ≤ γνλ
ν , ∀ 0 < ν ≤ ν, (10)

where the constant γν > 0 does not depend on λ.

A simple computation shows that gλ(σ) = 1
σ+λ

is an admissible filter function,

indeed Eqs. (8) and (9) hold with B = D = 1, condition (10) is verified with

γν = 1 for 0 < ν ≤ 1 and hence the qualification equals to 1. Other examples

are discussed in the next section. Here we give a heuristic motivation of the

above conditions having in mind the discussion in the previous section. First,

observe that population version of (6) becomes

fλ =
∑
i

σigλ(σi) 〈fρ, ui〉ρ ui. (11)
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We can make the following observations.

1. Eq. (8) ensures that eigenvalues of gλ(K) are bounded by B
λ

, so that (6)

is numerically stable. Moreover, looking at (11), we see that it also

implies that, if σi is much smaller than λ, the corresponding Fourier

coefficient
〈
fλ, ui

〉
of fλ is small. Hence, fλ has essentially only a finite

number of non-zero Fourier coefficients on the basis (ui)i≥1 and we can

argue that, by the law of large numbers, fλz is a good approximation of

fλ when n is large enough.

2. Assumption (9) implies that fλ converges to fρ if λ goes to zero. In

terms of the kernel matrix, such a condition means that gλ(K) con-

verges to K−1 when λ goes to zero, avoiding over-smoothing.

3. Condition (10) is related to the convergence rates of the algorithm.

These rates depend on how fast the Fourier coefficients 〈fρ, ui〉 con-

verge to 0 with respect to the eigenvalues σi (Bauer et al., 2006). This

information is encoded by a priori assumptions on fρ of the form

∞∑
i=1

〈fρ, ui〉2ρ
σ2r
i

< R, (12)

where the parameter r encodes the regularity property of the regression
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function. If r = 1/2 this corresponds to assuming fρ ∈ H and, more

generally, the larger is r the smoother is the function. Condition (10)

and the choice λn = 1
n2r+1 ensure that, if r ≤ ν,

∥∥fλnz − fρ
∥∥
ρ
≤ Cn−

r
2r+1 with high probability, (13)

whereas, if r ≥ ν, the rate of convergence is always n−
ν

2ν+1 ; for a proof

and a complete discussion see (Bauer et al., 2006; Caponnetto, 2006).

Hence filter functions having a larger qualification ν gives better rates,

that is, the corresponding algorithms can better exploit the smoothness

of fρ. This fact marks a big distinction among the various algorithms

we consider as we discussed in the following.

Also, notice that in the classification setting, that we will consider in

our experiments, if r ≤ ν bounds (2) and from (13) we have that

R(fλz )− inf
f
R(f) = O(n−

r
2r+1 )

with high probability.

Considering the decomposition fλz −fρ = (fλz −fλ)+(fλ−fρ), from the above

discussion we have that the consistency of this class of learning algorithms
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depends on two opposite terms: the approximation error
∥∥fλ − fρ∥∥ and the

sample error
∥∥fλz − fλ∥∥. The approximation error depends on the examples

only trough λ = λn and it decreases if λ goes to zero, whereas the sample

error is of probabilistic nature and it increases if λ goes to zero. The optimal

choice of the regularization parameter λ will be a trade-off between these two

errors – see (De Vito, Caponnetto, & Rosasco, 2005; Caponnetto & De Vito,

2006; Smale & Zhou, 2005a; Wu, Ying, & Zhou, 2006) and references therein

about the rates for regularized least-squares, and (De Vito, Rosasco, & Verri,

2005; Bauer et al., 2006; Caponnetto, 2006) for arbitrary filters.

Before giving several examples of algorithms fitting into the above gen-

eral framework we observe that the considered algorithms can be regarded

as filters on the expansion of the target function on a suitable basis. In

principle, this basis can be obtained from the spectral decomposition of the

integral operator LK and, in practice, is approximated by considering the

spectral decomposition of the kernel matrix K. Interestingly the basis thus

obtained has a natural interpretation: if the data are centered (in the fea-

ture space), then the elements of the basis are the principal components of

the expected (and empirical) covariance matrix in the feature space. In this

respect the spectral methods we discussed rely on the assumption that most
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of the information is actually encoded in the first principal components.

5 The Proposed Algorithms

In this section we give some specific examples of kernel methods based on

spectral regularization. All these algorithms are known in the context of

regularization for linear inverse problems but only some of them have been

used for statistical inference problems. These methods have many interesting

features: from the algorithmic point of view they are simple to implement,

usually they amount to a few lines of code. They are appealing for applica-

tions: their model selection is simple since they depend on few parameters,

while over-fitting may be dealt in a very transparent way. Some of them rep-

resent a very good alternative to Regularized Least Squares as they are faster

without compromising classification performance (see Section 7). Note that

for regularized least squares the algorithm has the following variational for-

mulation

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ ‖f‖2

H

which can be interpreted as an extension of empirical risk minimization. In

general the class of regularization might not be described by a variational
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problem so that filter point of view provides us with a suitable description.

More details on the derivation of these algorithms can be found in (Engl

et al., 1996).

5.1 Iterative Landweber

Landweber iteration is characterized by the filter function

gt(σ) = τ
t−1∑
i=0

(1− τσ)i

where we identify λ = t−1, t ∈ N and take τ = 1 (since the kernel is bounded

by 1). In this case we have B = D = 1 and the qualification is infinite

since (10) holds with γν = 1 if 0 < ν ≤ 1 and γν = νν otherwise. The above

filter can be derived from a variational point of view. In fact, as shown in

(Yao et al., 2007), this method corresponds to empirical risk minimization

via gradient descent. If we denote with ‖·‖ n the norm in Rn, we can impose

∇‖Kα− y‖2
n = 0,
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and by a simple calculation we see that the solution can be rewritten as the

following iterative map

αi = αi−1 +
τ

n
(y −Kαi−1), i = 1, . . . , t

where τ determines the step-size. We may start from a very simple solution,

α0 = 0. Clearly if we let the number of iterations grow we are simply

minimizing the empirical risk and are bound to overfit. Early stopping of the

iterative procedure allows us to avoid over-fitting, thus the iteration number

plays the role of the regularization parameter. In (Yao et al., 2007) the fixed

step-size τ = 1 was shown to be the best choice among the variable step-size

τ = 1
(t+1)θ

, with θ ∈ [0, 1). This suggests that τ does not play any role for

regularization. Landweber regularization was introduced under the name of

L2-boosting for splines in a fixed design statistical model (Bühlmann & Yu,

2002) and eventually generalized to general RKH spaces and random design

in (Yao et al., 2007).

23



5.2 Semi-iterative Regularization

An interesting class of algorithms are the so called semi-iterative regulariza-

tion or accelerated Landweber iteration. These methods can be seen as a

generalization of Landweber iteration where the regularization is now

gt(σ) = pt(σ)

with pt a polynomial of degree t− 1. In this case we can identify λ = t−2, t ∈

N. One can show that D = 1, B = 2 and the qualification of this class of

methods is usually finite (Engl et al., 1996).

An example which turns out to be particularly interesting is the so called

ν −method. The derivation of this method is fairly complicated and relies

on the use of orthogonal polynomials to obtain acceleration of the standard

gradient descent algorithm (see chapter 10 in (Golub & Van Loan, 1996)).

Such a derivation is beyond the scope of this presentation and we refer the

interested reader to (Engl et al., 1996). In the ν −method the qualification

is ν (fixed) with γν = c for some positive constant c. The algorithm amounts
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to solving (with α0 = 0) the following map

αi = αi−1 + ui(αi−1 − αi−2) +
ωi
n

(y −Kαi−1), i = 1, . . . , t

where

ui =
(i− 1)(2i− 3)(2i+ 2ν − 1)

(i+ 2ν − 1)(2i+ 4ν − 1)(2i+ 2ν − 3)

ωi = 4
(2i+ 2ν − 1)(i+ ν − 1)

(i+ 2ν − 1)(2i+ 4ν − 1)
t > 1.

The interest of this method lies in the fact that since the regularization

parameter here is λ = t−2, we just need the square root of the number of

iterations needed by Landweber iteration. In inverse problems this method

is known to be extremely fast and is often used as a valid alternative to

conjugate gradient – see (Engl et al., 1996), Chapter 6 for details. To our

knowledge semi-iterative regularization has not been previously in learning.
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5.3 Spectral Cut-Off

This method, also known as truncated singular values decomposition (TSVD),

is equivalent to the so called (kernel) principal component regression. The

filter function is simply

gλ(σ) =


1
σ

σ ≥ λ

0 σ < λ

In this case, B = D = 1. The qualification of the method is arbitrary and

γν = 1 for any ν > 0. The corresponding algorithm is based on the following

simple idea. Perform SVD of the kernel matrix K = USUT where U is an

orthogonal matrix and S = diag(σ1, . . . , σn) is diagonal with σi ≥ σi+1. Then

discard the singular values smaller than the threshold λ, replace them with

0. The algorithm is then given by

α = K−1
λ y (14)

where K−1
λ = UTS−1

λ U and S−1
λ = diag(1/σ1, . . . , 1/σm, 0, . . . ) where σm ≥ λ

and σm+1 < λ. The regularization parameter is the threshold λ or, equiva-

lently, the number m of components that we keep.
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Finally, notice that, if the data are centered in the feature space, then

the columns of the matrix U are the principal components of the covariance

matrix in the feature space and the spectral cut-off is a filter that discards the

projection on the last principal components. The procedure is well known in

literature as kernel principal component analysis – see for example (Schölkopf

& Smola, 2002).

5.4 Iterated Tikhonov

We conclude this section mentioning a method which is a mixture between

Landweber iteration and Tikhonov regularization. Unlike Tikhonov regular-

ization which has finite qualification and cannot exploit the regularity of the

solution beyond a certain regularity level, iterated Tikhonov overcomes this

problem by means of the following regularization

gλ(σ) =
(σ + λ)ν − λν

σ(σ + λ)ν
, ν ∈ N.

In this case we have D = 1 and B = t and the qualification of the method

is now ν with γν = 1 for all 0 < ν ≤ t. The algorithm is described by the
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following iterative map

(K + nλI)αi = y + nλαi−1 i = 1, . . . , ν

choosing α0 = 0. It is easy to see that for ν = 1 we simply recover the

standard Tikhonov regularization but as we let ν > 1 we improve the qual-

ification of the method with respect to standard Tikhonov. Moreover we

note that by fixing λ we can think of the above algorithms as an iterative

regularization with ν as the regularization parameter.

6 Different Properties of Spectral Algorithms

In this section we discuss the differences from the theoretical and computa-

tional viewpoints of the proposed algorithms.

6.1 Qualification and Saturation Effects in Learning

As we mentioned in Section 4 one of the main differences between the var-

ious spectral methods is their qualification. Each spectral regularization

algorithm has a critical value (the qualification) beyond which learning rates

no longer improve despite the regularity of the target function fρ. If this is
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the case we say that methods saturate. In this section we recall the origin of

this problem and illustrate it with some numerical simulations.

Saturation effects have their origin in analytical and geometrical proper-

ties rather than in statistical properties of the methods. To see this recall the

error decomposition fλz − fρ = (fλz − fλ) + (fλ − fρ), where the latter term

is the approximation error that, recalling (11), is related to the behavior of

fρ − fλ =
∑
i

〈fρ, σi〉ρ ui −
∑
i

σigλ(σi) 〈fρ, σi〉ρ ui (15)

=
∑
i

(1− σigλ(σi))σri
〈fρ, σi〉ρ
σri

ui.

If the regression function satisfies (12) we have

∥∥fρ − fλ∥∥ρ ≤ R sup
0<σ≤1

(|1− gλ(σ)σ|σr).

The above formula clearly motivates condition (10) and the definition of

qualification. In fact it follows that if r ≤ ν̄ then
∥∥fρ − fλ∥∥ρ = O(λr)

whereas if r > ν̄ we have
∥∥fρ − fλ∥∥ρ = O(λν̄). To avoid confusion note

that the index r in the above equations encodes a regularity property of the

target function whereas ν̄ in (10) encodes a property of the given algorithm.
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Figure 1: The behaviors of the residuals for Tikhonov regularization (left)
and TSVD (right) as a function of σ for different values of r and fixed λ.

In Figure 1 we show the behaviors of the residual (1−σgλ(σ))σr as a function

of σ for different values of r and fixed λ. For Tikhonov regularization (Figure

1, left) in the two top plots - where r < 1 - the maximum of the residual

changes and is achieved within the interval 0 < σ < 1, whereas in the two

bottom plots - where r ≥ 1 - the maximum of the residual remains the same

and is achieved for σ = 1. For TSVD (Figure 1, right) the maximum of the

residual changes for all the values of the index r, and is always achieved at

σ = λ. An easy calculation shows that the behavior of iterated Tikhonov is

the same as Tikhonov but the critical value is now ν rather than 1. Similarly

one can recover the behavior of ν-method and Landweber iteration.

In Figure 2 we show the corresponding behavior of the approximation error

as a function of λ for different values of r. Again the difference between
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Figure 2: The behaviors of the approximation errors for Tikhonov regular-
ization (left) and TSVD (right) as a function of λ for different values of
r.

finite (Tikhonov) and infinite (TSVD) qualification is apparent. For Tikhnov

regularization (Figure 2, left) the approximation error is O(λr) for r < 1 (see

the two top plots) and is O(λ) for r ≥ 1 (the plots for r = 1 and r = 2 overlap)

since the qualification of the method is 1. For TSVD (Figure 2, right) the

approximation error is always O(λr) since the qualification is infinite. Again

similar considerations can be done with iterated Tikhonov as well as for the

other methods.

To further investigate the saturation effect we consider a regression toy

problem and evaluate the effect of finite qualification on the expected error.

Clearly this is more difficult since the effect of noise and sampling contributes

to the error behavior through the sampling error as well. In our toy example
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X is simply the interval [0, 1] endowed with the uniform probability measure

dρX(x) = dx. As hypotheses space we choose the Sobolev space of absolutely

continuous, with square integrable first derivative and boundary condition

f(0) = f(1) = 0. This is a Hilbert space of function endowed with the norm

‖f‖2
H =

∫ 1

0

f ′(x)dx

and can be shown to be a RKH space with kernel

K(x, s) = Θ(x ≥ s)(1− x)s+ Θ(x ≤ s)(1− s)x

where Θ is the Heavyside step function. In this setting we compare the per-

formance of spectral regularization methods in two different learning tasks.

In both cases the output is corrupted by Gaussian noise. The first task is to

recover the regression function given by fρ(x) = K(x0, x) for a fixed point

x0 given a priori, and the second task is to recover the regression function

fρ(x) = sin(x). The two cases should correspond roughly to r = 1/2 and

r >> 1. In Figure 3 we show the behavior, for various training set sizes, of

∆(n) = min
λ

∥∥fρ − fλz ∥∥2

ρ
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Figure 3: The comparisons of the learning rates for Tikhonov regularization
and TSVD on two learning tasks with very different regularity indexes. In
the first learning task (top plot) the regression function is less regular than
in the second learning task (bottom plot). The continuous plots represent
the average learning rates over 70 trials while the dashed plots represent the
average learning rates plus and minus one standard deviation.
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where we took a sample of cardinality N >> n to approximate ‖f‖2
ρ with

1
N

∑N
i=1 f(xi). The plot is the average over 70 repeated trials and We consid-

ered 70 repeated trials and show the average learning rates plus and minus

one standard deviation. The results in Figure 3 confirm the presence of a

saturation effect. For the first learning task (top plot) the learning rates of

Tikhonov and TSVD is essentially the same, but TSVD has better learning

rates than Tikhonov in the second learning task (bottom plot) where the

regularity is higher. We performed similar simulations, not reported here,

comparing the learning rates for Tikhonov and iterated Tikhonov regulariza-

tion recalling that the latter has higher qualification. As expected, iterated

Tikhonov has better learning rates in the second learning tasks and essen-

tially the same learning rates in the first task. Interestingly we found the

real behavior of the error to be better than the one expected from the prob-

abilistic bound, and we conjecture that this is due to pessimistic estimate of

the sample error bounds.

6.2 Algorithmic Complexity and Regularization Path

In this section we will comment on the properties of spectral regularization

algorithms in terms of algorithmic complexity.
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Having in mind that each of the algorithms we discussed depends on at

least one parameter2 we are going to distinguish between: (1) the compu-

tational cost of each algorithm for one fixed parameter value and (2) the

computational cost of each algorithm to find the solution corresponding to

many parameter values. The first situation corresponds to the case when a

correct value of the regularization parameter is given a priori or has been

computed already. The complexity analysis in this case is fairly standard

and we compute it in a worst case scenario, though for nicely structured

kernel matrices (for example sparse or block structured) the complexity can

be drastically reduced.

The second situation is more interesting in practice since one usually has

to find a good parameter value, therefore the real computational cost in-

cludes the parameter selection procedure. Typically one computes solutions

corresponding to different parameter values and then chooses the one min-

imizing some estimate of the generalization error, for example hold-out or

leave-one-out estimates (T. Hastie et al., 2001). This procedure is related

to the concept of regularization path (S. Hastie T. andRosset et al., 2004).

Roughly speaking the regularization path is the sequence of solutions, cor-

2In general, besides the regularization parameter, there might be some kernel parame-
ter. In our discussion we assume the kernel (and its parameter) to be fixed.
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responding to different parameters, that we need to compute to select the

best parameter estimate. Ideally one would like the cost of calculating the

regularization path to be as close as possible to that of calculating the so-

lution for a fixed parameter value. In general this is a strong requirement

but, for example, SVM algorithm has a step-wise linear dependence on the

regularization parameter (Pontil & Verri, 1998) and this can be exploited to

find efficiently the regularization path (S. Hastie T. andRosset et al., 2004).

Given the above premises, analyzing spectral regularization algorithms

we notice a substantial difference between iterative methods (Landweber and

ν-method) and the others. At each iteration, iterative methods calculate

a solution corresponding to t, which is both the iteration number and the

regularization parameter (as mentioned above, equal to 1/λ). In this view

iterative methods have the built-in property of computing the whole regular-

ization path. Landweber iteration at each step i performs a matrix-vector

product between K and αi−1 so that at each iteration the complexity is

O(n2). If we run t iteration the complexity is then O(t ∗ n2). Similarly to

Landweber iteration, the ν-method involves a matrix-vector product so that

each iteration costs O(n2). However, as discussed in Section 5, the number of

iteration required to obtain the same solution of Landweber iteration is the
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square root of the number of iterations needed by Landweber (see also Table

2). Such rate of convergence can be shown to be optimal among iterative

schemes (see (Engl et al., 1996)). In the case of RLS in general one needs to

perform a matrix inversion for each parameter value that costs in the worst

case O(n3). Similarly for spectral cut-off the cost is that of finding the sin-

gular value decomposition of the kernel matrix which is again O(n3). Finally

we note that computing solution for different parameter values is in general

very costly for a standard implementation of RLS, while for spectral cut-off

one can perform only one singular value decomposition. This suggests the

use of SVD decomposition also for solving RLS, in case a parameter tuning

is needed.

7 Experimental analysis

This section reports experimental evidence of the effectiveness of the algo-

rithms discussed in Section 5. We apply them to a number of classification

problems, first considering a set of well known benchmark data and com-

paring the results we obtain with the ones reported in the literature; then

we consider a more specific application, face detection, analyzing the results
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obtained with a spectral regularization algorithm and comparing them with

SVM, which has been applied with success in the past by many authors. For

these experiments we consider both a benchmark dataset available on the

web and a set of data acquired by a video-monitoring system designed in our

lab.

7.1 Experiments on benchmark datasets

In this section we analyze the classification performance of the regularization

algorithms on various benchmark datasets. In particular we consider the

IDA benchmark, containing one toy dataset (banana — see Table 1), and

several real datasets3. These datasets have been previously used to assess

many learning algorithms, including Adaboost, RBF networks, SVMs, and

Kernel Projection Machines. The benchmarks webpage reports the results

obtained with these methods and which for our comparisons.

For each dataset, 100 resamplings into training and test sets are available

from the website. The structure of our experiments follows the one reported

on the benchmarks webpage: we perform parameter estimation with 5-fold

cross validation on the first 5 partitions of the dataset, then we compute the

3This benchmark is available at the website:
http://ida.first.fraunhofer.de/projects/bench/.
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median of the 5 estimated parameters and use it as an optimal parameter

for all the resamplings. As for the choice of parameter σ (i.e., the standard

deviation of the RBF kernel), at first we set the value to the average of

square distances of training set points of two different resamplings: let it be

σc. Then we compute the error on two randomly chosen partitions on on the

range [σc− δ, σc + δ] for a small δ, on several values of λ and choose the most

appropriate σ. After selecting σ, the parameter t (corresponding to 1/λ) is

tuned with 5-CV on the range [1,∞] where κ is supx∈X K(x, x). Regarding

the choice of the parameter ν for the ν − method and iterated Tikhonov

(where ν is the number of iteration) we tried different values obtaining very

similar results. The saturation effect on real data seemed much harder to

spot and all the errors where very close. In the end we chose ν = 5 for both

methods.

Table 2 shows the average generalization performance (with standard de-

viation) over the data sets partitions. It also reports the parameters σ and

t (= 1/λ) chosen to find the best model. The results obtained with the five

methods are very similar, with the exception of Landweber whose perfor-

mances are less stable. The ν −method performs very well and converges to

a solution in fewer iterations.
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Table 1: The 13 benchmark datasets used:their size (training and test), the
space dimension and the number of splits in training/test.

#Train #Test Dim #Resampl.

(1)Banana 400 4900 2 100
(2)B.Canc. 200 77 9 100
(3)Diabet. 468 300 8 100
(4)F.Solar 666 400 9 100
(5)German 700 300 20 100
(6)Heart 170 100 13 100
(7)Image 1300 1010 18 20
(8)Ringn. 400 7000 20 100
(9)Splice 1000 2175 60 20
(10)Thyroid 140 75 5 100
(11)Titanic 150 2051 3 100
(12)Twonorm 400 7000 20 100
(13)Wavef. 400 4600 21 100

From this analysis we conclude that the ν −method shows the best com-

bination of generalization performance and computational efficiency among

the four regularization methods analyzed. We choose it as a representative

for comparisons with other approaches. Table 3 compares the results ob-

tained with the ν-method, with an SVM with RBF kernel, and also, for each

dataset, with the classifier performing best among the 7 methods considered

on the benchmark page (including RBF networks, Adaboost and Regular-

ized AdaBoost, Kernel Fisher Discriminant, and SVMs with RBF kernels).

The results obtained with the ν −method compare favorably with the ones

achieved by the other methods.
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Table 2: Comparison of the 5 methods we discuss. The average and standard
deviation of the generalization error on the 13 datasets (numbered as in the
Table 1) is reported on top and the value of the regularization parameter and
the gaussian width - (t/σ) - on the bottom of each row. The best result for
each dataset is in bold face.

Landweber ν-meth RLS TSVD IT(ν = 5)
1 11.70± 0.68 10.67± 0.53 11.22± 0.61 11.74± 0.63 10.96± 0.56

(116/1) (70/1) (350/1) (301/1) (141/1)
2 25.38± 4.21 25.35± 4.24 25.12± 4.32 26.81± 4.32 25.26± 4.14

(5/2) (5/2) (41/2) (120/2) (4/2)
3 23.70± 1.80 23.60± 1.82 24.40± 1.79 24.29± 0.2 23.63± 1.88

(18/2) (11/2) (400/2) (300/2) (10/2)
4 34.27± 1.57 34.25± 1.59 34.31± 1.607 32.43± 0.90 30.92± 10.47

(25/1) (8/1) (51/1) (140/1) (6/1)
5 23.20± 2.28 23.14± 2.34 23.37± 2.11 24.67± 2.60 23.31± 2.24

(119/3) (16/3) (600/3) (1150/3) (51/3)
6 15.94± 3.37 15.48± 3.25 15.71± 3.20 15.58± 3.41 15.60± 3.41

(63/12) (16/12) (500/12) (170/12) (21/12)
7 6.42± 0.82 2.78± 0.56 2.68± 0.54 2.99± 0.48 2.72± 0.53

(7109/1) (447/2.6) (179000/2.6) (280000/2.6) (20001/2.6)
8 9.09± 0.89 3.09± 0.42 4.68± 0.7 2.85± 0.33 3.83± 0.52

(514/3) (37/3) (820/3) (510/3) (151/3)
9 14.71± 0.75 10.79± 0.67 11.43± 0.72 11.67± 0.68 10.92± 0.72

(816/6) (72/6) (1250/6) (1400/6) (501/6)
10 4.53± 2.34 4.55± 2.35 4.48± 2.33 4.49± 2.21 4.59± 2.34

(65/1) (28/1) (100/1) (200/1) (21/1)
11 23.53± 1.82 22.96± 1.21 22.82± 1.81 21.28± 0.67 20.20± 7.17

(5/1) (1/1) (1.19/1) (12/1) (1/1)
12 2.39± 0.13 2.36± 0.13 2.42± 0.14 2.39± 0.13 2.56± 0.30

(20/3) (7/3) (100/3) (61/3) (1/3)
13 9.53± 0.45 9.63± 0.49 9.53± 0.44 9.77± 0.35 9.52± 0.44

(8/3.1) (12/3.1) (150/3.1) (171/3.1) (21/3.1)
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Table 3: Comparison of the ν-method (right column) against the best of the 7
methods taken from the benchmark webpage (see text) on the 13 benchmark
datasets. The middle column shows the results for SVM from the same
webpage.

Best of 7 SVM ν-meth.

Banana LP Reg-Ada
10.73± 0.43 11.53± 0.66 10.67± 0.53

B.Canc. KFD
24.77± 4.63 26.04± 4.74 25.35± 4.24

Diabet. KFD
23.21± 1.63 23.53± 1.73 23.60± 1.82

F.Solar SVM-RBF
32.43± 1.82 32.43± 1.82 34.25± 1.59

German SVM-RBF
23.61± 2.07 23.61± 2.07 23.14± 2.08

Heart SVM-RBF
15.95± 3.26 15.95± 3.26 15.48± 3.25

Image ADA Reg
2.67± 0.61 2.96± 0.6 2.78± 0.56

Ringn. ADA Reg
1.58± 0.12 1.66± 0.2 3.09± 0.42

Splice ADA Reg
9.50± 0.65 10.88± 0.66 10.79± 0.67

Thyroid KFD
4.20± 2.07 4.80± 2.19 4.55± 2.35

Titanic SVM-RBF
22.42± 1.02 22.42± 1.02 22.96± 1.21

Twon. KFD
2.61± 0.15 2.96± 0.23 2.36± 0.13

Wavef. KFD
9.86± 0.44 9.88± 0.44 9.63± 0.49
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7.2 Experiments on face detection

This section reports the analysis we carried out on the problem of face de-

tection, to the purpose of evaluating the effectiveness of the ν-method in

comparison to SVMs. The structure of the experiments, including model

selection and error estimation, follows the one reported above. The data we

consider are image patches, we represent them in the simplest way unfolding

the patch matrix in a one-dimensional vector of integer values – the gray

levels. All the images of the two datasets are 19 × 19, thus the size of our

data is 361.

The first dataset we use for training and testing is the well known CBCL

dataset for frontal faces4 composed of thousands of small images of positive

and negative examples of size. The face images obtained from this benchmark

are clean and nicely registered.

The second dataset we consider is made of low quality images acquired

by a monitoring system installed in our department5. The data are very

different from the previous set since they have been obtained from video

frames (therefore they are more noisy and often blurred by motion), faces

have not been registered, gray values have not been normalized. The RBF

4Available for download at http://cbcl.mit.edu/software-datasets/FaceData2.html.
5The dataset is available upon request.
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#TRAIN + #TEST 600+1400 700+1300 800+1200
CLASSIFIER
RBF-SVM 2.41 ± 1.39 1.99 ± 0.82 1.60 ± 0.71

σ = 800 C = 1 σ = 1000 C = 0.8 σ = 1000 C = 0.8
ν-method 1.63 ± 0.32 1.53 ± 0.33 1.48 ± 0.34

σ = 341 t = 85 σ = 341 t = 89 σ = 300 t = 59

Table 4: Average and standard deviation of the classification error of SVM
and ν-method trained on training sets of increasing size. The data are the
CBCL-MIT benchmark dataset of frontal faces (see text).

kernel may take into account slight data misalignment due to the intra-class

variability, but in this case model selection is more crucial and the choice of

an appropriate parameter for the kernel is advisable.

The experiments performed on these two sets follow the structure dis-

cussed in the previous section. Starting from the original set of data, in both

cases we randomly extract 2000 data that we use for most of our experi-

ments: for a fixed training set size we generate 50 resamplings of training

and test data. Then we vary the training set size from 600 (300+300) to 800

(400+400) training examples. The results obtained are reported in Table

4 and Table 5. The tables show a comparison between the ν-method and

SVM as the size of the training set grows. The results obtained are slightly

different: while on the CBCL dataset the ν-method performance is clearly

above the SVM classifier, in the second set of data the performance of the
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#TRAIN + #TEST 600+1400 700+1300 800+1200
CLASSIFIER
RBF-SVM 3.99 ± 1.21 3.90 ± 0.92 3.8 ± 0.58

σ = 570 C = 2 σ = 550 C = 1 σ = 550 C = 1
ν-method 4.36 ± 0.53 4.19 ± 0.50 3.69 ± 0.54

σ = 250 t = 67 σ = 180 t = 39 σ = 200 t = 57

Table 5: Average and standard deviation of the classification error of SVM
and ν-method trained on training sets of increasing size. The data are a have
been acquired by a monitoring system developed in our laboratory (see text).

ν-method increases as the training set size grows.

At the end of this evaluation process we retrained the ν-method on the

whole set of 2000 data and again tuned the parameters with KCV obtaining

σ = 200 and t = 58. Then we used this classifier to test a batch of newly

acquired data (the size of this new test set is of 6000 images) obtaining a

classification error of 3.67%. These results confirm the generalization ability

of the algorithm. For completeness we report that the SVM classifier trained

and tuned on the whole dataset of above — σ = 600 and C = 1 — lead to

an error rate of 3.92%.

8 Conclusion

In this paper we present and discuss several spectral algorithms for supervised

learning. Starting from the standard regularized least squares we show that
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a number of methods from the inverse problems theory lead to consistent

learning algorithms. We provide a unifying theoretical analysis based on the

concept of filter function showing that these algorithms, which differ from

the computational viewpoint, are all consistent kernel methods. The iterative

methods – like the ν-method and the iterative Landweber – and projections

methods – like spectral cut-off or PCA – give rise to regularized learning

algorithms in which the regularization parameter is the number of iterations

or the number of dimensions in the projection, respectively.

We report an extensive experimental analysis on a number of datasets

showing that all the proposed spectral algorithms are a good alternative, in

terms of generalization performances and computational efficiency, to state

of the art algorithms for classification, like SVM and adaboost. One of

the main advantages of the methods we propose is their simplicity: each

spectral algorithm is an easy-to-use linear method whose implementation is

straightforward. Indeed our experience suggests that this helps dealing with

overfitting in a transparent way and make the model selection step easier. In

particular, the search for the best choice of the regularization parameter in

iterative schemes is naturally embedded in the iteration procedure.

46



Acknowledgments

We would like to thank S. Pereverzev for useful discussions and suggestions

and A. Destrero for providing the faces dataset. This work has been par-

tially supported by the FIRB project LEAP RBIN04PARL and by the EU

Integrated Project Health-e-Child IST-2004-027749.

References

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Amer. Math.

Soc., 68, 337–404.

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2006). Convexity, classifi-

cation, and risk bounds. J. Amer. Statist. Assoc., 101 (473), 138–156.

Bauer, F., Pereverzev, S., , & Rosasco, L. (2006). On regularization al-

gorithms in learning theory. Journal of Complexity,. (In Press, doi:

10.1016/j.jco.2006.07.001 , Online 19 October 2006,)

Bertero, M., & Boccacci, P. (1998). Introduction to inverse problems in

imaging. Bristol: IOP Publishing.

Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal

of Machine Learning Research, 2, 499-526.

47
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Universitá degli Studi di Genova, Italy.

Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse

problems (Vol. 375). Dordrecht: Kluwer Academic Publishers Group.

Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and

support vector machines. Adv. Comp. Math., 13, 1-50.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural

networks architectures. Neural Computation, 7 (2), 219–269.

Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (Third ed.).

Baltimore, MD: Johns Hopkins University Press.

Hastie, S., T. andRosset, Tibshirani, R., & Zhu, J. (2004). The entire

regularization path for the support vector machine. JMLR, 5, 1391–

1415.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical

learning. New York: Springer.

Li, W., Lee, K.-H., & Leung, K.-S. (2007). Large-scale rlsc learning without

49



agony. In Icml ’07: Proceedings of the 24th international conference on

machine learning (pp. 529–536). New York, NY, USA: ACM Press.

Micchelli, C. A., Xu, Y., & H., Z. (2006). Universal kernels. JMLR, 7,

2651–2667.

Ong, C., & Canu, S. (2004). Regularization by early stopping (Tech.

Rep.). Computer Sciences Laboratory, RSISE, ANU. (available at

http://asi.insa-rouen.fr/ scanu/)

Ong, C., X., M., Canu, S., & Smola, A. (2004). Learning with non-

positive kernels. In Proceedings of the 21 st international confer-

ence on machine learning, banff, canada, 2004. (available at

http://www.aicml.cs.ualberta.ca/ banff04/icml/pages/papers/392.pdf)

Poggio, T., & Girosi, F. (1992). A theory of networks for approximation and

learning. In C. Lau (Ed.), Foundation of neural networks (p. 91-106).

Piscataway, N.J.: IEEE Press.

Poggio, T., Rifkin, R., Mukherjee, S., & Niyogi, P. (2004). General conditions

for predictivity in le arning theory. Nature, 428, 419-422.

Pontil, M., & Verri, A. (1998). Properties of support vector machines. Neural

Computation, 10, 977–996.

Rakhlin, A., Mukherjee, S., & Poggio, T. (2005). Stability results in learning

50



theory. Analysis and Applications, 3, 397-419.

Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge, MA:

MIT Press.

Smale, S., & Zhou, D. (2005a). Learning theory estimates via in-

tegral operators and their approximations (Tech. Rep.). Toy-

ota Technological Institute at Chicago, USA. (available at

http://ttic.uchicago.edu/ smale/papers/sampIII5412.pdf)

Smale, S., & Zhou, D.-X. (2004). Shannon sampling and function reconstruc-

tion from point values. Bull. Amer. Math. Soc. (N.S.), 41 (3), 279–305

(electronic).

Smale, S., & Zhou, D.-X. (2005b). Shannon sampling. II. Connections to

learning theory. Appl. Comput. Harmon. Anal., 19 (3), 285–302.

Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs. In

Colt.

Tikhonov, A., & Arsenin, V. (1977). Solutions of ill posed problems. Wash-

ington, D.C.: W. H. Winston.

Vapnik, V. (1982). Estimation of dependences based on empirical data. New

York: Springer-Verlag. (Translated from the Russian by Samuel Kotz)

Vapnik, V. N. (1998). Statistical learning theory. New York: John Wiley &

51



Sons Inc.

Wahba, G. (1990). Spline models for observational data (Vol. 59). Philadel-

phia, PA: SIAM.

Wu, Q., Ying, Y., & Zhou, D.-X. (2006). Learning rates of least-square

regularized regression. Found. Comput. Math., 6 (2), 171–192.

Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in gradient

descent learning,. Constructive Approximation. (In Press, available at

http://math.berkeley.edu/ yao/publications/earlystop.pdf)

Zhang, T., & Ando, R. (2006). Analysis of spectral kernel design based

semi-supervised learning. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.),

Advances in neural information processing systems 18 (pp. 1601–1608).

Cambridge, MA: MIT Press.

Zhu, X., Kandola, J., Ghahramani, Z., , & Lafferty, J. (2005). Nonparametric

transforms of graph kernels for semi-supervised learning. In Neural

information processing systems 17.

52


