The cutting planes method

The idea:

– If the solution of the linear relaxation (RL) of a problem (IP) is not integer then the optimal integer solution lies in the polyhedron P of (RL)
– We can add constraints to P in order to tighten it
– These new constraints cut parts of the polyhedron
– The cut parts do not contain integer solutions
– The optimal integer solution is sought by solving a sequence of relaxed problems progressively adding cuts
The cutting planes method

Let (IP) \(\max x_0 = \mathbf{c}^T x \)
\[Ax = b \quad \Rightarrow \quad P = \{ x \in \mathbb{Z}^n : Ax = b, x \geq 0 \} \]
\[x \in \mathbb{Z}_+^n \]

Let \(x^* \) the optimal integer solution of (IP)

The first (RL) problem with \(x^* \) optimal solution

(RL) \(\max x_0 = \mathbf{c}^T x \)
\[Ax = b \quad \Rightarrow \quad P_0 = \{ x \in \mathbb{R}^n : Ax = b, x \geq 0 \} \]
\[x \in \mathbb{R}_+^n \]

A sequence of polyhedra is build (Gomory sequence) such that

\[P_0 \supset P_1 \supset \ldots \supset P_t \]
\[P_i \cap \mathbb{Z}^n = P \]
\[x^* \notin P_i \]
\[x_i^* \equiv x^* \]
The cutting planes method

The sequence is obtained adding cuts to P_0

Definition

An inequality $a^T x \geq a_0$ is a **cut** for polyhedron P' of the relaxation (RL) of problem (IP) if, being x° the optimal non integer solution of (RL), it holds:

1) $a^T y \geq a_0 \ \forall y \in P$ *(valid inequality)*
2) $a^T x^\circ < a_0$ *(not satisfied by x°)*

- The cutting planes method finds the optimal integer solution by adding a finite number of cuts
- Each cut separates the non integer solution of the current (RL) from the feasible solutions for (IP)
The cutting planes method

Example

Non integer optimum for (RL)

Non valid inequality: non integer optimum of (RL) not cut off

Valid inequality

Non valid inequality: two (IP) feasible solutions cut off
The cutting planes method: fractional cut

• Defined by R. Gomory (1950)
• Let assume to have found the (non integer) optimum to (RL) of (IP)
• The m basic variables and the solution

\[x_{B_i} = y_{i0} - \sum_{j \in R} y_{ij} x_j \quad i = 1, \ldots, m \]

(1)

\[x_{B_i} = y_{i0} \quad i = 1, \ldots, m \quad x_j = 0 \quad \forall j \in R \]

• Let i a non integer component

\[y_{i0} = \lfloor y_{i0} \rfloor + f_{i0} \quad 0 < f_{i0} < 1 \]

\[y_{ij} = \lfloor y_{ij} \rfloor + f_{ij} \quad 0 \leq f_{ij} < 1 \]

\[\lfloor a \rfloor = \text{floor} = \text{the largest integer not greater than} \ a \]
The cutting planes method: fractional cut

Rewriting l.h.s. of \(i \)-th equation (1)

\[
y_{i0} = x_{B_i} + \sum_{j \in R} \lfloor y_{ij} \rfloor x_j + \sum_{j \in R} f_{ij} x_j \geq x_{B_i} + \sum_{j \in R} \lfloor y_{ij} \rfloor x_j \geq 0
\]

then imposing that \(x_{B_i} \) is integer

\[
x_{B_i} + \sum_{j \in R} \lfloor y_{ij} \rfloor x_j \leq y_{i0} = \lfloor y_{i0} \rfloor + f_{i0} \implies x_{B_i} + \sum_{j \in R} \lfloor y_{ij} \rfloor x_j \leq \lfloor y_{i0} \rfloor
\]

integer

Substituting \(x_{B_i} \) from (1)

\[
\sum_{j \in R} \lfloor y_{ij} \rfloor x_j + \sum_{j \in R} f_{ij} x_j - \lfloor y_{i0} \rfloor - f_{i0} - \sum_{j \in R} \lfloor y_{ij} \rfloor x_j \geq -\lfloor y_{i0} \rfloor
\]
The cutting planes method: fractional cut

- Then the Gomory’s Fractional Cut is

\[
\sum_{j \in R} f_{ij} x_j \geq f_{i0} \quad (2)
\]

Theorem

For every non integer component \(i \) of the non integer solution of (RL) the inequality (2) is a cut for polyhedron \(P \)
The cutting planes method: fractional cut

Example

\[\text{max } \begin{align*} x_0 & = 2x_1 + x_2 \\ x_1 + x_2 & \leq 5 \quad (1) \\ -x_1 + x_2 & \leq 0 \quad (2) \\ 6x_1 + 2x_2 & \leq 21 \quad (3) \\ x_1, x_2 & \geq 0 \\ x_1, x_2 & \in \mathbb{Z} \end{align*} \]

\[\text{max } x_0 = 2x_1 + x_2 \]
\[x_1 + x_2 + x_3 = 5 \]
\[-x_1 + x_2 + x_4 = 0 \]
\[6x_1 + 2x_2 + x_5 = 21 \]
\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]
\[x_1, x_2 \in \mathbb{Z} \]

Solving the (RL)

<table>
<thead>
<tr>
<th></th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_2)</td>
<td>3/2</td>
<td>0</td>
<td>-1/4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_4)</td>
<td>-2</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(x_1)</td>
<td>-1/2</td>
<td>0</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The Gomory’s cut from \(x_2 \) row
The cutting planes method: fractional cut

The associated equation

\[x_2 + \frac{3}{2} x_3 - \frac{1}{4} x_5 = \frac{9}{4} \quad \Rightarrow \quad x_2 = \frac{9}{4} - \left(\frac{3}{2} x_3 - \frac{1}{4} x_5 \right) \]

\[y_{ij} = \lfloor y_{ij} \rfloor + f_{ij} \quad 0 \leq f_{ij} < 1 \]

\[0 < f_{i0} < 1 \]

The fractional cut

\[\frac{1}{2} x_3 + \frac{3}{4} x_5 \geq \frac{1}{4} \]
The cutting planes method: fractional cut

\[\frac{1}{2} x_3 + \frac{3}{4} x_5 \geq \frac{1}{4} \]

substituting \(x_1 \) and \(x_2 \)

\[5x_1 + 2x_2 \leq 18 \]

Not satisfied by \((11/4, 9/4)\)