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Abstract

Information Flow Control is concerned with the correct handling
of data with respect to a security policy. A common enforcement
technique is annotated type systems. For object-oriented languages,
type systems have been developed for class-based languages. The
reason for this is that in a class-based language, it is simpler to
design a type system that ensures well-typed programs do not result
in method-not-found errors, and this property can be assumed in the
information flow control mechanism.

In the case of dynamic languages, for example, prototype-based
ones like Javascript, no type system is currently powerful enough
to handle common language idioms, which hinders the adoption of
security-typing in practical settings. As a solution this paper pro-
poses to make the handling of method-not-found errors explicit in
the security type system: the type system does not enforce regu-
lar soundness, so well-typed programs might fail, but even in case
of such errors non-interference is ensured. This paper outlines this
approach and provides an initial investigation of its feasibility. A
security type system for a functional object calculus with extension
is presented and shown to enforce non-interference.

1. Introduction

As society increasingly makes use of networked computer systems
that store, process and transmit sensitive information, it has become
more important to formally prove that programs handle data in
an appropriate fashion. Many different security properties have
been proposed in the past. A common property is noninterference.
Informally, a program has the noninterference property, if private
inputs do not influence public outputs. Then, under the assumption
that an attacker can only access public outputs, she cannot deduce
which inputs were used. There are two main approaches to enforce
noninterference: one is static and the other is dynamic. Both control
the ways information is allowed to flow in the program and are
called static and dynamic information flow control, respectively.

In the dynamic approach, all information is labeled at runtime.
‘Whenever information is used, labels on the results are set accord-
ingly. Only low-labeled results are allowed to be sent to low out-
puts. Besides a difficulty with certain forms of hidden flows, there
can be significant overhead in the label computations (cf. [5]).

In the static context, a type regime is established. Types are an-
notated with conservative approximations of the labels of runtime
values. Type checking will enforce the correct handling of data.
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A big advantage is the low overhead at runtime. It is also possi-
ble to retain the annotation of source programs and use these for a
lightweight verification of the programs on a user’s computer.

Several languages have been proposed for static information
flow control. Where proofs have been given, they are usually estab-
lished in the standard manner of progress and subject reduction (or
preservation). The underlying type system is either proven sound
in the process, or assumed so: any program that can be typed in the
underlying program cannot produce errors during execution. Thus
it is unnecessary to include errors in the information flow control
layer on top of the underlying type system.

In the object-oriented setting, this means there are no message-
not-found errors at runtime. This is a strong guarantee, which is
hard to prove for many practical, dynamically-typed languages.
In fact, recent empirical studies [20] showed that in the case of
Javascript, most of the simplifying assumptions made in state-of-
the-art work are violated in practice. A general type system that
does not reject a significant number of practical programs seems
out of reach at the moment. How is it then possible to prove
noninterference statically?

We propose to explicitly handle the case of method-not-found
errors in the computation. In this model, it is acceptable if a pro-
gram fails because a method is to be called that the target object
does not possess. However, errors cannot be allowed to transport
information about private inputs.

We adopt the first-order version Ob, < of the Object Calculus of
Abadi and Cardelli [1]. This calculus is centered around objects as
the only primitives. The allowed operations are object formation,
method invocation, and method override. We extend the semantics
to also allow method extension (i.e., adding new methods) and
make errors explicit. Differing from previous work however, our
target is not type soundness in the usual sense. Our types are
overapproximations of the interface of an object. If an object can
be typed, it will have a subset of the methods. Thus the meaning
of an object type is that the invocation of a method either returns
an object of the given method return type, or results in a method-
not-found error. This allows us to control the invocation even of
methods that do not exist, in a principled manner. If such a method
is added through extension, it needs to agree with the previously
stored type. Therefore, old judgments are still valid. To make the
scheme work, we allow errors to be subtypes of all types.

This paper is structured as follows: Section 2 gives an intuition
about our long-term goal, using simple examples. In section 3 we
define the syntax and semantics of our calculus. Section 4 describes
the type system we employ to enforce noninterference. A proof
of noninterference for our calculus is given in section 5. Related
work is discussed in Section 6. Section 7 concludes with remarks
on ongoing work.



2. Example

In this section, we give a high-level example of what we are trying
to accomplish. For simplicity, we assume a simple, imperative,
object-based language that supports method extension. Then we
could write a program like

o= ..
o.m()

With a standard type system, it might not be possible to establish
that method m is defined when execution reaches the second line.
Thus a standard type system approach will reject this program.

However, a missing method does not necessarily mean that there
is a malicious flow of information, the usual suspect just being a
bug. We propose to ignore the responsibilities of the underlying
type system (i.e., ensuring the absence of method-not-found errors)
and focus on information flow control even in the presence of such
errors. There are two ways the program above might be safe: if we
know that there is a method m, regardless of what high-level input
the program received, or if we know there is no such method. In the
first case, the computation will continue (possibly failing inside the
call). In the second case, no matter the input, computation will fail
at the second line. Thus, an attacker cannot gain more information
than already available at that point.

Furthermore, if we cannot prove a method’s existence or non-
existence, but can show that that decision is only influenced by low
conditions, a fail or successful call also does not leak information.
Take for example the following program:

o= ...
if (b)

o.n = function()...
o.n()

If the condition b is low, i.e., it is not confidential, an attacker will
already know if the call will fail or not '.

We propose a type system similar to a conservative analysis:
types overapproximate the set of methods of a value. This allows us
to type incomplete objects. In comparison to work in that area (see
related work), we are more lenient with respect to method calls.
For safety, previous work only allows a method call if it is statically
known the method exists. We however do allow calls to all methods,
since we do want to allow method-not-found errors. The reduction
will terminate in an error state in the case of a missing method.

Different from the work on incomplete objects, we cannot al-
low an object’s type to “forget” methods by subsumption. For our
approximation to be safe, we can only increase the approximation.

In this work, we develop a type system in a simple first-order
object calculus. In an imperative setting, information can be leaked
through control flow structures and needs to be handled specially.
In a functional setting, there are no control structures. Information
gained through conditional execution (encoded through method
calls) is transferred in the current object and never-decreasing. This
eases the exposition of the idea, because if a call may fail in a
high setting, the overall result of the program had to be high, too.
For the imperative setting, further techniques (e.g., [3]) need to be
integrated.

But encouragingly, our type system is already able to type
incomplete objects and enforce noninterference in the presence of
errors. Currently, ongoing work investigates a more expressive type
system closer to our goal in an imperative calculus.

UIf the call is made in a high environment, though, information would
be leaked. A program position is in a high environment, if reaching this
location depends on some confidential data. This is loosely related to [3].

o= s Variable
[m; = c(si)es])-; Object
0.m Method invocation

0+?m=c¢(s)o’ Method override or extension

err Error constant

Figure 1. Extended Syntax

3. Base Calculus

As mentioned, we adopt the first order calculus of Abadi and
Cardelli [1]. This calculus is functional and centered around prim-
itive objects. The calculus consists essentially of four elements:
variables, object literals, method invocations and method overrides.

Object literals are records with method names and method bod-
ies. Bodies are functions that take the object itself as their single
argument (self-application semantics). Method bodies are only pro-
cessed when invoked. The syntax uses the ¢ binder instead of A to
signal this late-binding semantics.

Method invocation selects a method by name from an object,
and substitutes the self-parameter with the object in the method
body. Method override replaces the function stored in an object.
In Abadi’s calculus, method override is restricted to replacing an
already existing method. We add method extension to allow the
extension of an object with new methods, which is a common
feature in practical dynamic object-based languages.

This simple calculus does not allow method parameters besides
the self-parameter. However, multi-argument functions can be emu-
lated through additional methods that stand for parameters. Method
override of those methods will emulate parameter passing. The
same technique can also be used to encode the simple lambda cal-
culus in the object calculus. The calculus does not directly support
delegation and prototypes. However, a form of delegation can also
be encoded. Alternatively, the calculus can be extended, as for ex-
ample done in [2]. For a more detailed account of the encodings we
refer to [1].

For information flow control, we assume the simple security
lattice [13] (L, E) with bottom element L and join operation LI.
Elements of the lattice are used as annotated labels in the calculus
and represent confidentiality levels. Labels are ranged over by ¢
and 1. The partial order C then orders the labels with respect to the
sensitivity of the information: If ¢ C 1, then any value labeled ¢
is assumed less confidential than a value labeled 1, and any value
tagged with ¢ can be used in places where a value with label ¢
is needed. As an example, take L = {l, h} with the meaning that
I = L stands for low=public information, and h for high=private.
Then [ T h, so that 5! is less confidential than 4”. For a more
detailed description we refer to [13, 22].

We add security annotations to most of the syntactic elements.
We include an explicit element for error. This element is not in-
tended to be used by the programmer. The extended syntax is given
in Figure 1.

We extend the purely reduction-based semantics of [1] to re-
tain annotations. Furthermore, our calculus allows the addition of
methods. The reduction rules (Red — Over) and (Red — Ext)
are applied depending on the shape of the object being extended.
In the inherited case, (Red — Owver) applies when the object al-
ready has a method of the given name. Otherwise, (Red — Fuxt)
will add the method to the object. Since the calculus is functional, a
new object will be returned in either case. It is noteworthy that both
cases will be handled by a single typing rule. There is no reduction
rule for variables (they are discharged through substitution), and no
rule that reduces an object literal. All other terms are erroneous and
will reduce to err. The non-error reduction rules are listed in Fig-
ure 2. The error reduction rules are listed in Figure 3. Evaluation is



(With 0 = [m; = (ss)04) 7))

(Red — Inv)
0.*m; — oj{sj =0} jel
(Red — Over)
0+¥ m; =¢(sj)0 — Jel

[mi = <(s:)0i,m5 = 5(55)0 )01 5y

(Red — Ext)
o+Y m; =c(s;j)o’ = il
[mi = <(si)oi,m; = <(s;)0') 0,

Figure 2. Reduction (without errors)

(With 0 = [m; = <(s:)oi]{2;)

(Red — NotFound) 0%m; — err j&I

(Red — ErrInv) err.?m; — err
(Red — ErrQOwver) err +¥ mj =¢(s;)0’ — err

Figure 3. Reduction (errors)

derived from reduction by contracting the leftmost, outermost re-
dex. This simplifies the exposition and corresponds to the regular
evaluation strategy of [1].

4. Type System

The goal of our type system is to enforce noninterference, not the
absence of runtime errors (e.g., method-not-found errors). Thus it
works in an irregular fashion more reminiscent of a conservative
analysis. Types are ranged over by 7 and o, and are labeled. An
object type [m; : Tz‘]fe ; describes objects with an annotation at
most ¢ and a subset of the methods m;. Thus, all possible callable
methods are contained in the type. We made errors explicit with
the error constant err. The type of errors is E. Since an object
type is an over-approximation of an object’s interface, we include
a subtyping relationship of EE with every type. Thus, any method
may potentially return err >. This makes the approximation safe
with respect to the reduction. The type E and the error element err
are implicitly labeled with | and not a valid type for components
of an object type. We use the notation 7% for the type that results
from 7 by replacing the label with the join of the old label and ¢,
e.g., (int™)"H = int™H — intH,

Type environments I store assignments of types to variables in
the usual way. The error type is not allowed in a type environment.

We have the usual judgments:

' Well-formed environment
Fr Well-formed type

T 1 S T2

I'ko:r

Subtypes
Term has type

Well-formedness is defined in the usual way. Note that we do not
need the type environment for type-related judgments, since we do
not support type variables.

We add subtyping rules that correspond to our semantics of
types. If an object is of a type with a set of methods, it is also of a
type with the same list of methods, extended by a new method.
This unusual subtyping is safe because of the object-has-subset

2In a sense, this is similar to null and the null-type in practical languages.

(Sub — Refl) (Sub — Trans)
[ Fr<o Fo<rT
Fr<r Fr<t
(Sub — Err) (Sub — Partial)
[ l_[mi:'ri]fej ¢E"/’
FE<T Fma s 7l < fmamll,
(Sub — Ext)

F[mi s 7, m; :Tj}?euej

F [m; : Ti}fel < [mi s 7,my :Tj]?elyje‘]

Figure 4. Subtyping

(T — Prof) (T — Sub)
I,s:7,T' % I'o:0 Fo<rt
Ns:r,IVkFs:T T'ko:T

(T — Oby)
T:[mjzaj}fej I1CJ Viel.T,si:7ko;:0;

'k [m; = g(si)oi]f’el i T
(T — Inv)
T'to: [mi:n]fel jel
I'FoYm,: Tjw’ué

(T — Owver)

T =[mi:n)’

ier TFo:m TysjiThoji7 jel

I'ko+«Ymy;=cq(sj)o;: 7%

Figure 5. Typing Rules

semantics. Furthermore, we lift the partial order of the security
lattice to subtyping. We finalize subtyping with the usual reflexivity
and transitivity. The subtyping rules are shown in Figure 4.

The typing rules are an adapted version of the Object Calculus’.
Projection types variables according to the type environment. A
subsumption rule is defined in the standard way. The rule (T'—Oby)
types an object literal. We can type an object with type 7, if 7
contains at least all the methods in the body, and we can type all
method bodies under the assumption that the self parameter is of
type 7. The (T' — Inv) rule types an invocation if we can type the
receiver with a type that contains the method. The (T'— Over) rule
is used both for extension and override. In the type system, they
are identical. To extend a method means to replace an (“abstract™)
method already contained in the type. The typing rules are listed in
Figure 5.

5. Noninterference

We proceed to establish noninterference along the following lines:
First, we show subject reduction for our type system. Next, we
show that reduction and substitution are orthogonal. Then we show
that low-typed terms in high environments are either values or can
be reduced. Finally, we can establish a version of noninterference.
For this treatment, we need a helper function for labels of types
and type environments. toplabel(7) is the outermost annotation of
type 7. The judgment toplabel(T") [Z ¢ is defined as V(s : 7) €



I'.toplabel(7) £ ¢. Informally that means that all variables bound
in the type environment are more confidential than the given label.

The proof of subject reduction structurally follows [1]. How-
ever, our semantics is small-step. We start with three standard aux-
iliary lemmas that are straightforward by induction and definition
of the calculus.

LEMMA 5.1 (Generation). If " F [m; = g(si)oi]fej : T, then
: Tj}j’eJ with I C J, such that
1y and D my = g(si)oi}fel to

there exists a type o = [m;
Vj el T,s;
and Fo < T.

1ok oo

LEMMA 5.2 (Weakening). If I',s : 7, IV Fo:ocand -7 < 1
are derivable, then alsoT',s : 7/, T' F o : 0.

LEMMA 5.3 (Substitution). IfI',s : 7, TV Fo:ocandT Fp: 1
are derivable, then also T, T - o{s := p} : 0.
We are now able to prove the subject reduction property.

THEOREM 5.1 (Subject Reduction). If I" - o
thenT o' : 7.

7 and o — 0O,

Proof By induction on the derivation of I' - o : 7.

Case (T — Prof)

In that case, o is a variable and there is no reduction.

Case (T — Sub)

The inductive hypothesis applies to the first premise. Another
application of (7" — Sub) yields the result.

Case (T' — Obj)

Object literals are values and cannot be reduced.
Case (T — Inv)
Then o = p.¢
Error
If p is an error or a constant, then the term is reduced to err.
The result is obtained by application of (7" — Sub).

Not a value
If p is not a value, the inductive hypothesis applies to the
first premise and p — p’. Thus, o’ = p’.?m, can be typed
with 7.

Value
In case p is a value, i.e., an object literal, there are two
cases. If 7 is not a valid index, the term is reduced to err
and subtyping will give the right result. If j is a valid index,
then by the first premise we have a typing of the object.
This allows us to apply the generation lemma, which yields
I'Fp:oandT,s; : 0 F o; : 7;. From the substitution
lemma it follows that I' F o0;{s; := p} : 7;. The result
follows by subtyping.

Case (T' — Owver)

Then 0 = p <% m; = <(s;)0;. Again, we have the three
cases for p, where the error/constant and non-value cases are
analogous. In the case that p is a value, we have a typing for
the literal by the first premise. Applying the generation lemma
gives us typings of the already established methods with a type
o < 7. We can use the weakening lemma with the second
premise of (1" — Ower) and receive a typing of the new method
with respect to . We can combine all those results to type
the object literal that is the result of either (Red — Over) or
(Red— Ext), according to whether a method was already there.
Subtyping completes the case.

m;. There are three sub-cases.

‘We now show that reduction and substitution are orthogonal.

LEMMA 5.4 (SubstEval). If I';s : ¢ F o :
Tk p: o, then o{s :=p} — o'{s := p}.

7, 0 = 0, and

Proof By induction on the derivation of I';s : o - o : 7. Most
cases are either vacuous or straightforward. We show the case of
(T — Inw), where 0 = ¢.?my, and ¢ is an object literal with
method my. Then o' = ox{sk := q} and o{s := q} = (¢{s :=
q}.¢mk. The substitution does not change the set of methods, so
(Red — Inv) can be applied. We need to distinguish the cases
s = sk and s # s when we apply the reduction. Finally, rewriting
the term according to the standard substitution rules results in
ox{sk := q}{s = p}.

The next to last step is progress of lowly-typed terms in high
environments.

LEMMA 5.5 (Low Progress). If I' = o : 7 with toplabel(T") Z
toplabel(T), then either o is a value (object literal, constant or
err), or there is an o’ so that o — 0'.

Proof By induction on the derivationof I' - o : 7.

Case (T — Prof)

In that case, o is a variable and (0 = s : 7) is part of the
type environment. Thus, —(toplabel(I") £ toplabel(7)), so
the second premise of the lemma is not fulfilled.

Case (T — Sub)

Subtyping maintains the partial order of security labels. Thus
the inductive hypothesis applies to the first premise. So there
exists an o’ such that o — 0.

Case (T — Obj)

Object literals are values, which fulfills the lemma.
Case (T — Inv)
Then o = p.¢
Error
If p is an error or a constant, then the reduction p.®m; —
err applies.

Not a value
If p is not a value, the inductive hypothesis applies to the
first premise (same type, same environment) and p — p’.
Thus, p.?m; — p’.?m;.

Value
In case pis a value, i.e., an object literal, there are two cases.
If 5 is not a valid index, the reduction that applies is 0 —
err. If j is a valid index, then we can apply (Red — Inv).
Thus we get o — 0;{s; := p}.

Case (T — Owver)

Then o = p <? m; = ¢(s;)o;. Again, we have the three cases
for p, where the error and non-value cases are analogous. In the
case that p is a value, we can either apply (Red — Over) or
(Red — Ext), depending on the existence of m; in p.

m;. There are three sub-cases.

Finally, we approach noninterference. In the original calculus there
are only primitive objects. To state noninterference, we need to
define an equivalence relation on objects with respect to a given
labeling. A simple definition is observational equivalence, where
an attacker is allowed to invoke only low-typed methods, which
corresponds to the ability of an attacker to inspect low-typed heap
elements in an imperative model. The definition is slightly com-
plicated by the fact that methods in literals are not annotated with
types.

Let | denote the “big-step” closure of the reduction, i.e., 0 |} v
iff v is a value and 0 —™ v. Note that the reduction rules are
deterministic, so there is at most one value v. Furthermore, let
o |} oo stand for an infinite, non-terminating computation, i.e.,
there is no value v such that o —* v.

DEFINITION 5.1 (Object Equivalence). Two objects 01 and o2 are
equivalent with respect to security level ¢, written as 01 ~¢ 02, iff



for all types T = [m; : Tiw)el witht C ¢ 0 F o1 : 7 and
0 & o2 : T: For all methods m; with toplabel(r;) C ¢:
1. If o1. my I v1, then for some va, 02.7m; | va and vy ~g V2.
2. I‘]‘.OQ.Lmi | o, then for some v1, o1. m; | v1 and v1 ~¢ vo.
Now we can state our non-interference theorem.

THEOREM 5.2 (Noninterference). If s o F o T (where

toplabel(t) = @) with toplabel(c) Z ¢, 0 + p : o and
0 & p' : o, then either both computations o{s := p} and
o{s := p'} diverge, or both computations return results equiva-

lent with respect to ¢.

Proof If toplabel(c) [Z toplabel(r), we can apply the low-
progress lemma to o. With subject reduction, we can repeat the
process. This results in a chain of reductions 0 — o' — 0" — ...,
that is either finite and ends with a value (by the low-progress
lemma), or that is infinite, i.e., the computation diverges.

We can now apply the subst-eval lemma to this chain for both
p and p'. The result is, that the computations for o{s := p} and
o{s := p'} diverge exactly if the computation of o diverges.

Now we can handle the case of converging computations. By
subst-eval, the computations are o | v, o{s := p} | v{s := p}
and o{s := p'} | v{s := p'} for some v. To show equivalence, we
use bisimulations, or more precisely the technique of strong bisim-
ulations up to ~ [16]. We choose the following binary relation:

dr,o.s:0bFq: T A
Fp:oAkFp o
toplabel(o) IZ ¢ A
toplabel(c) [Z toplabel(T)
We need to show that Sy is closed under invocation of low-typed
methods, that is, if (¢{s := p},q{s := p'}) € Sp,and s : o I
q: [m; : Tz}j’el, then for all m; with toplabel(n) C ¢ with
q{s :=p} Jvand ¢{s:=p'} | v' we have (v,v ) € Sp.

_ ) (¢{s:=p},
Se = q{s:=p'})

The approach is similar to the one above. First, since toplabel(7;) C

¢, toplabel(o) £ toplabel(7;). Thus we can apply low-progress,
subject reduction and subst-eval. As above, either both computa-
tions return results or diverge. If they converge, the computations
are ¢.7m; | wo, q{s = p}.Lmi I vo{s := p} and ¢{s :=
P’} mi | vo{s := p'} for some vo. Now s : 0 - vo : 74, - p : 0,
F p’ : o, toplabel(o) IZ ¢ and toplabel(c) [Z toplabel(r;).
Thus, (v,v’) € Sg. This concludes the proof.

Note that err is different from all other elements. Thus, if one
computation fails with an error, so must the other. It is not possible
to use the message-not-understood error to gain information about
the input.

6. Inference

It is possible to adopt the work of Palsberg [19] for type inference °.
The inference algorithm is constraint-based, and works by reducing
constraints first to a graph and then an automaton. The language
accepted by the automaton for different start states describes the
types of the corresponding expressions.

Because of our changed typing rules, and most significantly the
change in the subtyping relationship, compared to the original ob-
ject calculus, a modification of the constraint rules is necessary.
The adapted rules are given in Figure 6, where changes to Pals-
berg’s work have been underlined. With those changes, it is easy to
prove that a system of constraints generated by an expression has a
solution if and only if the expression is typeable, and the solution
for the expression is a valid type (cf. Lemma 4.2 in [19]).

3In our context, typing, since we do not use explicit method parameter
annotations.

x is a variable:
z < [z]

[m: = ¢(x;)o4] is a literal:
[mi : [o:]]] < [[m :”}C(l’i)oi}ﬂ

21 = [m: = <)

0.m; is invocation:
[mi : (0.m:)] < [o]
(o.m;) < Jo.my]

0 < m; = ¢(x1)o; is method extension/override:
[o] < [o = mi = q(wi)oi]
[mi : [oi]] < [o

[o] ==z

Figure 6. Constraint Rules

The system of constraints is then translated into an equivalent
graph representation. Types and expressions become nodes. Con-
straints establish directed <-labeled edges, while types also intro-
duce method-labeled edges. The graph is closed for < edges, that
is, edges for reflexivity and transitivity of < are added. Further-
more, since the type system only supports width-subtyping, edges
are included to enforce this property*. A solution of the graph is
a mapping of variable nodes to types, such that the subtyping on
edges is satisfied. It is obvious that a solution to a constraint system
exists if and only if a solution to the corresponding graph exists (cf.
Theorem 5.2 in [19]).

Finally, the graph is used to derive an automaton with the
method names as alphabet and states corresponding to the nodes of
the graph. All states are accepting. The automaton has transitions
between states with e if there’s a <-labelled edge, and with the
name of the method on a method-labelled edge. However, since
our subtyping relation is inverse to that of Abadi and Cardelli, and
the typing rules usually establish lower bounds, we inverse the di-

rection of the <-edges, e.g., a constraint a < b induces an a é b,
which defines a transition b = a.

The language £(s) is defined as all the words accepted when
starting from state s. It can be shown that £ is a solution for the
graph (cf. Theorem 6.5 in [19]). The proofs in [19] have to be
adapted for the reversed subtyping relationship, but are structurally
the same. If the language £ is finite for the top-level expression,
the types are finite and can be expressed in our system. Otherwise,
recursive types are necessary.

From this basic inference of the structure of types, we can
iteratively propagate labels from free variables, which need to be
defined in a type environment, to obtain a complete typing. All
types are initially assumed to be low. If a type mapping contains
a high label, it is joined, into the enclosing expression according
to the type rules. Then the process is repeated, until either the
propagation finishes or a contradiction is found.

7. Related Work

For a good survey of language-based information flow control,
we refer to [22]. Several treatments of information flow in object-
oriented languages have been presented, e.g., [6, 18, 21, 23]. These
are all class-based, a quite different setting from ours, with its own
challenges and simplifications.

Our proofs were inspired by work of Barthe and Serpette [7]. To
the best of our knowledge, thiss is the only other information flow

4 Note that the closure is changed in direction to account for our subtyping.



work in foundational object calculi. The work presents an annotated
version of Abadi and Cardelli’s object calculus and its first-order
type system. Our work differs in that it allows object extension and
does not rely on Abadi & Cardelli as an underlying type system,
and thus execution might produce method-not-found errors.

Our work is related to [4]. Askarov and Sabelfeld describe an
extension of JIF that allows to designate exceptions that cannot be
caught and lead to termination. While on the surface similar, goals
and features are quite different. Our work considers object-oriented
programming based around objects and allows adding methods
to objects, a feature widely used in dynamic languages, while an
extension of JIF is class-based and thus objects are static.

Most work for information flow control in dynamic languages
is non-static. One noteable exception that is related to our work is
[12] for Javascript. A flow analysis is performed to conservatively
compute influences. The process is staged, since the presence of
eval in Javascript makes a whole-program analysis unfeasible. To
allow a fast syntactic check when loading Javascript, the enforce-
able policies are very simplistic: a variable may not be read or may
not be written. In comparison, we support any security lattice, for
example, the very expressive DLM [17], and an annotation checker
could be used to verify annotations. The staging process could be
integrated in our work to support eval.

Our work is partially inspired by previous work on extensible
object calculi. Two main calculi have been proposed [1, 14], and
both have been extended to include subtyping and object exten-
sion [9, 11, 15].

Incomplete objects have been considered in [8, 10]. Types are
split up into an interface and a completion component. Only meth-
ods in the interface component might be called, while the comple-
tion component defines dependencies (e.g., method that need to be
added to complete an object). Our type system does not separate
between interface and completion components, since we want to
allow calling potentially non-existing methods.

8. Conclusion

‘We have shown how to establish noninterference without the need
of a proof of type soundness in the underlying system. The current
work is in a first-order functional object calculus with method
extension. This simplifies the work significantly. However, ongoing
research work is being pursued in the following directions:

For the imperative setting, our simple unified type is not suffi-
cient. In the functional calculus, the second example program from
section 2 collapses, because any error in a high context cannot be
observed by a low attacker.

We are experimenting with a three-segment object type, inspired
by two-segment types in [10, 15]. Methods in the first segment
are known to exist. Methods in the third segment are known to
be missing. Methods in the middle segment may exist. Operations
allow to add methods (second or third to first) and remove methods
(first or second to third). Subtyping ensures that we can merge
object types by moving methods from first to second and third to
second, and add new methods as missing.

The previous encoding would allow us to explicitly remove
methods. This is an interesting feature not covered in other calculi
(since it is not type-safe when the goal is absence of message-not-
found).
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