
Information Flow Control with Errors

Andreas Gampe and Jeffery von Ronne

Department of Computer Science
The University of Texas at San Antonio

() Information Flow Control with Errors 1 / 14

Scripted Apps, Risks

Javascript in
I Facebook
I IPhone, Android
I Windows Metro

Ruby, Python, . . .

Profile

Contacts

Usage data

() Information Flow Control with Errors 2 / 14

Security Approach

Confidentiality

Usage Control / Information Flow Control

Security lattice, e.g., {L,H}
Runtime monitoring

Static enforcement
I Logic
I Static Analysis
I Type Systems

() Information Flow Control with Errors 3 / 14

The Problem

Javascript very dynamic

Approaches
I Linear Types (Kehrt & Aldrich, FOOL’08)
I Recency Types (Heidegger & Thiemann, FOOL’09)
I Singleton Types (Zhao, FOOL’10)

Richards (PLDI’10): practive vs. theory

() Information Flow Control with Errors 4 / 14

Our Approach

Drop error-freeness as goal

Pluggable type system

Handle errors in security type system

Ensure that errors do not leak information

() Information Flow Control with Errors 5 / 14

OO Calculi

Based on Abadi & Cardelli

Includes extension (inspired by Liquori)

Errors: method not found on invocation

All syntactical elements labeled

Reduction includes explicit rules for error states

() Information Flow Control with Errors 6 / 14

Traditional Type System Setup

[]

[foo : int] [bar : bool]

[foo : int, bar : bool][foo : int, baz : double] [foo : int, baz : String]

Subtyping allows to use an object in a more general context

If we expect a point, we can use a colored point.
We only “forget” the color functionality.

Underapproximate set of methods

() Information Flow Control with Errors 7 / 14

Our Setup

Overapproximate types, add error type

E

[]

[foo : int] [bar : bool]

[foo : int, bar : bool][foo : int, baz : double] [foo : int, baz : String]

Only enforces the consistent usage of all methods

() Information Flow Control with Errors 8 / 14

Consequences

Code can call unknown methods

Allows incomplete objects to be typed

Only one rule for override & extension

Diamond types are not needed (cf. Liquori)

() Information Flow Control with Errors 9 / 14

Security Proof

Preservation Typed terms reduce to typed terms

↓
Subst. Reduction Term & term with substitution reduce similarly

↓
Low Progress Low-typed terms are values or can progress

↓
Noninterference Low result similar for different high inputs

() Information Flow Control with Errors 10 / 14

Indistinguishability by bisimulation

Indistinguishability by behaviour
I Two objects equivalent if all low calls have equivalent results

I Coinductive definition

I Establish with bisimulation
F Similar to noninterference proof itself

() Information Flow Control with Errors 11 / 14

Type Inference

Structural inference

Adapted from Palsberg
1 Term
2 Constraint System
3 Constraint Graph
4 Type Automaton

I Subtyping inversed → some constraints inversed

Security typing: incrementally propagate from type environment

() Information Flow Control with Errors 12 / 14

Future Work

Imperative version

Delegation / explicit prototypes

Method deletion

() Information Flow Control with Errors 13 / 14

Thanks!

Questions?

() Information Flow Control with Errors 14 / 14

