Types for Precise Thread Interference

Jaeheon Yi, Stephen Freund
Tim Disney, Cormac Flanagan Williams College
UC Santa Cruz

October 23, 2011

Multiple Threads Single Thread

X+ +

X+ +
IS @ hoh-atomic
read-modify-write

X = 0; X = 0;
thread interference?
while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp:;
thread interference?
X+ +; X+ +;
thread interference?
} }

Controlling Thread Interference #1: Manually

X = 0, manually identify where X = 0;
thread interference? H d interf
while (x < len) { thread interterence while (x < len) {
thread interference? does not occur
tmp = a[x]; , tmp = a[x];
thread interference?
b[x] = tmp:; b[x] = tmp;
thread interference?
X++; X++;
thread interference?
} }

Programmer Productivity Heuristic:
assume no interference, use sequential reasoning

4

Controlling Thread Interference #2: Race Freedom

e Race condition: two concurrent
unsynchronized accesses, at Thread 1 Thread 2

least one write acquire (m)
t2 = bal

release (m)

e Strongly correlated with defects

acquire (m)
tl = bal
release (m)

e Race-free programs exhibit
sequentially consistent
behavior, even when run on a
relaxed memory model

acquire (m)
bal = t2 - 10

release (m)

_ _ acquire (m)
e Race freedom by itself is not bal = £1 + 10
sufficient to prevent release (m)

concurrency bugs

Controlling Thread Interference #3: Atomicity

e A method is atomic if it behaves as if it executes serially,
without interleaved operations of other thread

atomic copy(...) {
X = 0;

while (x < len) {
tmp = a[x];

b[x] = tmp:;

bimodal semantics

<>

5

}

INncrement or
read-modify-write

void busyloop(...) {
acquire(m);

while (Itest()) {
release(m);

acquire(m);

D

J
J

10% of methods non-atomic
local atomic blocks awkward
full complexity of threading

sequential reasoning ok
90% of methods atomic

Review of Cooperative Multitasking

e Cooperative scheduler performs context switches only
at yield statements

yield| e Clean semantics
yi.e"Id e Sequential reasoning valid by default ...
<
o ... except where yields highlight thread interference
yield
—)
Id e Limitation: Uses only a single processor
yie
<

yi.e"Id

Cooperative Concurrency

Cooperative scheduler
seq. reasoning ok
except where yields

highlight interference‘/

acquire(m)

x=0
release(m)
yield
yield
barrier(b)
yield
acquire(m)
X++
release(m)
yield
r
Cooperative

COorreCtness

Code with sync & yields

acquire(m)
X+ +
release(m)

vield // interference

Yields mark all
thread interference

\ /

/

Coop/ prveemptive
equivalence

Preemptive scheduler

full performance
no overhead

yield

acquire(m)
x=0
release(m)
yield

X++
release(m)
yield

acquire(m)

barrier(b)
yield

Preemptive
correctness

Benefits of Yield over Atomic

e Atomic methods are exactly those with no yields

atomic copy(...) {
X = 0;

while (x < len) {
tmp = a[x];

b[x] = tmp:;

<>

5

}

X++ always
an increment
operation

void busyloop(...) {
acquire(m);

while ('test()) {

release(m);
vield;
acquire(m);

atomic Is an interface-level spec
(method contains no vields)

&

§
J

vield is a code-level spec

Multiple Threads Single Thread

X+ +

X+ +
IS @ hoh-atomic
read-modify-write

X = 0; X = 0;
thread interference?
while (x < len) { while (x < len) {
thread interference?
tmp = a[x]; tmp = a[x];
thread interference?
b[x] = tmp; b[x] = tmp:;
thread interference?
X+ +; X+ +;
thread interference?
} }

Cooperative Concurrency

X+ 4+ IS ah Ihcrement

{intt=x; vield; x=t+1; }

X = 0;

while (x < len) {
vield;
tmp = a[x];
vield;
b[x] = tmp;

X++;

Single Thread

X+ +

X = 0;

while (x < len) {

tmp = a[x];
b[x] = tmp:;

X++;

11

Cooperabllity in the design space

non-interference specification

atomic yield
traditional
_ | synchronization atomicity |cooperapllity
O] +analysis (this talk)
O :
Q . , Mmaltl
Nnew runtime | transactional alsrtw%tuzt\c
Systems Memory exclusion

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

Cooperative Concurrency

TS

Preemptive scheduler
full performance
no overhead

A3 .
(7 Seem TV

Cooperative scheduler
seq. reasoning ok
except where yields

highlight interference‘/ \
. 'j/«

3.
1. Static type system
Cooperat for veriftying C-P equivalence reemptive

correctness equivalence correctness

Type System for Cooperative-Preemptive Equivalence

e Type checker takes as input Java programs with
e traditional synchronization
e yield annotations
e racy variables (if any) are identified
e (other type systems/analyses identify races)

e Theorem:

Well-typed programs are cooperative-preemptive equivalent

14

—ffect Language

e Approach: Compute an effect for each program expression that summarizes
how that expression interacts with other threads

o Effects:
e R right-mover lock acquire
° | left-mover lock release
o M both-mover race-free access
o N non-mover racy access
oY yield

e Lipton’s theory of reduction: Code block is serializable if matches R* [N] L*
® Program Is cooperative-preemptive equivalent

e if each thread matches: (R* [N] L*Y)* (R* [N] L*)

¢ (serializable transactions separated by yields)

15

Sequential

—ffect Composition

Z o &”®Z < -

Z o8 Z < 1|

A <A KKK

z - "8 2 < Z|Z

A A < AA

L |

Z - Z

Z Z - Z|Z

t

X IS racy...

Xx=t+1;

N

N

—ror

t=x; yield; x=t+1;

N

Y

N

q

N

16

—ffect Composition for Choice

if (b) then acg(M); else rel(N);

3 L
N

Join correctly over-approximates
the effect of each branch

I
NS

Full Effect tracks both commutativity and atomicity

/ -
AN CR CL
AR /g X
\ /4/v T mover effect {F, Y, M, R, L, N}
AM CY combined with
T serializability effect {A, C}

AF

—ffect Language includes Conditional Effects

e Constants: AF, AM, AL, AR, AN, CY, CM, CR, CL, CN

e Conditionals encode effects under different locking conditions:
lock ? effect : effect
class StringBuffer {
int count;
this ? both—-mover : non—-mover

public synchronized int length() A
return count;
}

19

Cooperative Concurrency

n0de with svnc & vield

2. Example of
coding with Yields

Cooperative scheduler
seq. reasoning ok
except where yields

highlight interference

Preemptive scheduler
full performance
no overhead

1. Static type system

for veritying C-P equivalence

Cooperati
correctness

reemptive

equivalence correctness

20

void update x() {

x = slow f(x);

version 1

Coop/preemptive
equivalence

N\

X 1S volatile
concurrent calls to update_x

Not C-
No yield betweer

P equivale

Cooperative
correctness

—

Nt

Preemptive
correctness

aCCesses to X

21

void update x() {
synchronized(m){
x = slow f(x);

I3

}

Not efficient!

high lock contention
= low performance

" 2 Coop/preemptive /\ Cooperative é Preemptive
Ve rS I O n equivalence correctness correctness

22

void update x() {

Nt

int fx = slow_f(x);
synchronized(m){
x = Tx;
}
}
S Not C-P equivale
¥ No vield betweer
VErSion 3 || /\ | corecmees | =7 | ooanbies

aCCesses to X

23

void update x() {
int fx = slow f(x);
yield;
synchronized(m){
x = Tx;
I3

}

Not correct:
Stale value at yield

" 4 Coop/preemptive /\ Cooperative é Preemptive
Ve rS I O n equivalence correctness correctness

void update x() { restructure:
int y = x; test and retry pattern
for (;;) { est and retry p
yield;
int fy = slow _f(y);
if (x == y) {
x = Ty;
return;
} else {
y = X;
3> Not C-P equivalent;
b .
\ } x No vield between access to x
VErsion 5 |Fxreemeiel /\ Corecness = | cemetee

25

void update_x() {
int y = x;
for (;;) {
yield;
int fy = slow_f(y);
synchronized(m){
if (x == y) {
x = Ty;
return;
} else {

y_xl

: Coop/preemptive /\ Cooperative
VerSIOn 6 equivalence correctness

Preemptive
correctness

26

Cooperative Concurrency

Cooperative scheduler
seq. reasoning ok
except where yields

highlight interference

Preemptive scheduler
full performance
no overhead

1. Static type system

for veritying C-P equivalence

Cooperati
correctness

reemptive

equivalence correctness

27

-

_

™

e
| h In non-atomic methods, count
All field accesses | oints: field accesses, lock acquires,
and lock acquires " land atomic methods calls
. \
program LOC No Analysis [Method Atomic Yields
j.u.z.Inflater 317 36 0 0
J.u.z.Deflater 381 49 O 0
J.L.StringBuffer 1276 210 9 1
j.1.String 2307 230 6 1
J.1.PrintWriter 534 /3 130 20
J.u.Vector 1019 185 44 4
j.u.z.ZipFile 490 120 85 30
sparse 308 329
tsp 706 445
elevator 1447 454
raytracer-fixed 1915 5065
sor-fixed 958 249

28

Summary of Cooperative Concurrency

Code with sync & yields

acquire(m)

Cooperative schedul X+
POPCETAVE SCRCULIL release(m) Preemptive scheduler
seq. reasoning ok... yield // interference full performance

...except where yields

highlight interference
X++ an increment op QAL ,\

no overhead

;32):!:((:)) / ac=quire(m)

yield ;ei::lejse(m)
yield I yiele barrier(b)

5iaerlrc:er(b) — iiqrire(m) yield
acquire(m) ;?é?gse(m)

Yields mark all
thread interference
. \4 . 5 .
Cooperative A Coop/preemptive i reemptive

correctness equivalence correctness

29

slang.soe.ucsc.edu/cooperability

