
Types for Precise Thread Interference
Jaeheon Yi,
Tim Disney, Cormac Flanagan
UC Santa Cruz

Stephen Freund
Williams College

October 23, 2011

2

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Multiple Threads

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

3

Controlling Thread Interference #1: Manually

manually identify where
thread interference

does not occur

Programmer Productivity Heuristic:
assume no interference, use sequential reasoning

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

4

t1 = bal

bal = t1 + 10

t2 = bal

bal = t2 - 10

Thread 1 Thread 2

Controlling Thread Interference #2: Race Freedom

• Race condition: two concurrent
unsynchronized accesses, at
least one write

• Strongly correlated with defects

• Race-free programs exhibit
sequentially consistent
behavior, even when run on a
relaxed memory model

• Race freedom by itself is not
sufficient to prevent
concurrency bugs

acquire(m)
bal = t1 + 10
release(m)

acquire(m)
t1 = bal
release(m)

acquire(m)
bal = t2 - 10
release(m)

Thread 1 Thread 2

release(m)
t2 = bal
acquire(m)

5

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

Controlling Thread Interference #3: Atomicity

• A method is atomic if it behaves as if it executes serially,
without interleaved operations of other thread

sequential reasoning ok
90% of methods atomic

void busyloop(...) {
 acquire(m);
thread interference?
 while (!test()) {
thread interference?
 release(m);
thread interference?
 acquire(m);
thread interference?
 x++;
thread interference?
 }
}

10% of methods non-atomic
local atomic blocks awkward
full complexity of threading

bimodal semantics
increment or

read-modify-write

6

Review of Cooperative Multitasking

• Cooperative scheduler performs context switches only
at yield statements

• Clean semantics

• Sequential reasoning valid by default ...

• ... except where yields highlight thread interference

• Limitation: Uses only a single processor

...

...

...

...
yield

...
yield

...
yield

...

...
yield

...

...
yield

7

∧ Coop/preemptive
equivalence ⇒

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield // interference
 ...

Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all
thread interference

8

void busyloop(...) {
 acquire(m);
thread interference?
 while (!test()) {
thread interference?
 release(m);
thread interference?
 acquire(m);
thread interference?
 x++;
thread interference?
 }
}

void busyloop(...) {
 acquire(m);

 while (!test()) {

 release(m);
 yield;
 acquire(m);

 x++;

 }
}

atomic copy(...) {
 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }
}

Benefits of Yield over Atomic

atomic is an interface-level spec
(method contains no yields)

x++ always
an increment

operation

• Atomic methods are exactly those with no yields

yield is a code-level spec

9

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Multiple Threads

x++
is a non-atomic

read-modify-write

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

10

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

Single Thread

x++
Cooperative Concurrency

x++ is an increment

{ int t=x; yield; x=t+1; }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
thread interference?
 tmp = a[x];
thread interference?
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

 x = 0;
thread interference?
 while (x < len) {
 yield;
 tmp = a[x];
t yield;
 b[x] = tmp;
thread interference?
 x++;
thread interference?
 }

11

Cooperability in the design space

atomic yield
traditional

synchronization
+ analysis

atomicity cooperability

new runtime
systems

transactional
memory

automatic
mutual

exclusion

non-interference specification

po
lic

y

Transactional Memory, Larus & Rajwar, 2007
Automatic mutual exclusion, Isard & Birrell, HOTOS ’07

(this talk)

12

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ∧ Coop/preemptive

equivalence
Preemptive
correctness⇒

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

3. Experiments: Yield count

2. Example of
 coding with Yields

1. Static type system
 for verifying C-P equivalence

3. Experiments: Yield count

2. Example of
 coding with Yields

13

Type System for Cooperative-Preemptive Equivalence

•Type checker takes as input Java programs with
• traditional synchronization
•yield annotations
• racy variables (if any) are identified

• (other type systems/analyses identify races)

•Theorem:

 Well-typed programs are cooperative-preemptive equivalent

14

Effect Language

• Approach: Compute an effect for each program expression that summarizes
how that expression interacts with other threads

• Effects:

• R right-mover lock acquire

• L left-mover lock release

• M both-mover race-free access

• N non-mover racy access

• Y yield

• Lipton’s theory of reduction: Code block is serializable if matches R* [N] L*

• Program is cooperative-preemptive equivalent

• if each thread matches: (R* [N] L* Y)* (R* [N] L*)

• (serializable transactions separated by yields)

15

Sequential Effect Composition

µ µ∗

F F
Y M
M M
R R
L L
N −

; F Y M R L N
F F Y M R L N
Y Y Y Y Y L L
M M Y M R L N
R R R R R N N
L L Y L − L −
N N R N − N −

M

N

R L

F Y

4.2 Atomicity Effects
Each program expression also has an atomicity effect τ that sum-
marizes whether the expression performs a yield operation.

τ ::= A | C

Here, A (atomic) means the expression never yields, and C (compound)
means the expression may yield. Ordering (❁), iterative closure
(τ∗) and sequential composition (τ1; τ2) for atomicity effects are
defined by:

A ❁ C

τ∗
def
= τ

τ1; τ2
def
= τ1 � τ2

4.3 Combined Effects
A combined effect κ is a pair of a mover effect µ and an atomicity
effect τ :

κ ::= τµ

Note that not all combined effects are meaningful; in particular, AY
and CF are contradictory: an atomic piece of code may not contain
a yield, and code with yields cannot be considered functional.

We define the ordering relation and the join, iterative closure,
and sequential composition operations on combined effects in a
point-wise manner:

τ1µ1 � τ2µ2 iff τ1 � τ2 and µ1 � µ2

τ1µ1 � τ2µ2
def
= τ3µ3 where τ3 = τ1 � τ2 and µ3 = µ1 � µ2

τ1µ1; τ2µ2
def
= τ3µ3 where τ3 = τ1; τ2 and µ3 = µ1; µ2

(τµ)∗
def
= τ∗µ∗

The following diagram summarizes the resulting lattice of com-
bined effects:

CN

CR CL

AM

AN

AR AL

CY

CM

AF

4.4 Conditional Effects
Based on the previous discussion, the effect of acquiring a lock m
is AR, since a lock acquire is a right-mover that contains no yield
operations. However, if the lock m is already held by the current
thread, then the re-entrant lock acquire is actually a no-op and could
be more precisely characterized as a both-mover AM.

Figure 3: YIELDJAVA Syntax

P ∈ Program = defn

defn ∈ Definition ::= class c { field meth }
field ∈ Field ::= c f
meth ∈ Method ::= a c m(c x) { e }

e, � ∈ Expr ::= x | null
| eγf | eγf = e
| eγm(e) | eγm#(e)
| new c(e) | eγsync e | fork e
| let x = e in e | if e e e | while e e

γ ∈ OptYield ::= . | . .

x, y ∈ Var

c, d ∈ ClassName

f ∈ FieldName = Normal ∪ Final ∪Volatile

m ∈ MethodName

a ∈ Effect

We introduce conditional effects to capture situations like this
where the effect of an operation depends on which locks are held
by the current thread. We use � to range over expressions that are
functional (F). Such expressions always reliably denote the same
lock. An effect a is then either a combined effect κ or an effect
conditional on whether a lock � is held:

a ::= κ | � ? a1 : a2

We extend the calculation of iterative closure, sequential com-
position, and join operations to conditional effects as follows:

(� ? a1 : a2)
∗ = � ? a∗1 : a∗2

(� ? a1 : a2); a = � ? (a1; a) : (a2; a)
a; (� ? a1 : a2) = � ? (a; a1) : (a; a2)

(� ? a1 : a2) � a = � ? (a1 � a) : (a2 � a)
a � (� ? a1 : a2) = � ? (a � a1) : (a � a2)

We also extend the effect ordering to conditional effects. To
decide a1 � a2, we use an auxiliary relation�h

n, where h is a set of
locks known to be held by the current thread, and n is a set of locks
known not to be held by the current thread. We define a1 � a2 to
be a1 �∅

∅ a2 and check a1 �h
n a2 recursively as follows:

κ1 � κ2

κ1 �h
n κ2

� �∈ n ⇒ a1 �h∪{l}
n a

� �∈ h ⇒ a2 �h
n∪{l} a

� ? a1 : a2 �h
n a

� �∈ n ⇒ κ �h∪{l}
n a1

� �∈ h ⇒ κ �h
n∪{l} a2

κ �h
n � ? a1 : a2

A similar notion of ordering was used for conditional atomicities
in our previous work on atomicity checkers [21].

5. Type and Effect System
We now formalize our type system for the idealized language
YIELDJAVA, a multithreaded subset of Java. This language does not
include some Java features, such as primitive types, arrays, inher-
itance, and interfaces. However, it is sufficient to explore the most
salient aspects of reasoning about thread interference. Section 6 de-
scribes how our implementation extends this idealized type system
to support other Java features.

5.1 Syntax
Figure 3 presents the YIELDJAVA syntax. A program P consists
of a sequence of class definitions defn . Each class definition defn

4 2011/9/14

t=x; x=t+1;

N N
Error

t=x; yield; x=t+1;

N N
R

Y
N

N

x is racy...

16

Effect Composition for Choice

µ µ∗

F F
Y M
M M
R R
L L
N −

; F Y M R L N
F F Y M R L N
Y Y Y Y Y L L
M M Y M R L N
R R R R R N N
L L Y L − L −
N N R N − N −

M

N

R L

F Y

4.2 Atomicity Effects
Each program expression also has an atomicity effect τ that sum-
marizes whether the expression performs a yield operation.

τ ::= A | C

Here, A (atomic) means the expression never yields, and C (compound)
means the expression may yield. Ordering (❁), iterative closure
(τ∗) and sequential composition (τ1; τ2) for atomicity effects are
defined by:

A ❁ C

τ∗
def
= τ

τ1; τ2
def
= τ1 � τ2

4.3 Combined Effects
A combined effect κ is a pair of a mover effect µ and an atomicity
effect τ :

κ ::= τµ

Note that not all combined effects are meaningful; in particular, AY
and CF are contradictory: an atomic piece of code may not contain
a yield, and code with yields cannot be considered functional.

We define the ordering relation and the join, iterative closure,
and sequential composition operations on combined effects in a
point-wise manner:

τ1µ1 � τ2µ2 iff τ1 � τ2 and µ1 � µ2

τ1µ1 � τ2µ2
def
= τ3µ3 where τ3 = τ1 � τ2 and µ3 = µ1 � µ2

τ1µ1; τ2µ2
def
= τ3µ3 where τ3 = τ1; τ2 and µ3 = µ1; µ2

(τµ)∗
def
= τ∗µ∗

The following diagram summarizes the resulting lattice of com-
bined effects:

CN

CR CL

AM

AN

AR AL

CY

CM

AF

4.4 Conditional Effects
Based on the previous discussion, the effect of acquiring a lock m
is AR, since a lock acquire is a right-mover that contains no yield
operations. However, if the lock m is already held by the current
thread, then the re-entrant lock acquire is actually a no-op and could
be more precisely characterized as a both-mover AM.

Figure 3: YIELDJAVA Syntax

P ∈ Program = defn

defn ∈ Definition ::= class c { field meth }
field ∈ Field ::= c f
meth ∈ Method ::= a c m(c x) { e }

e, � ∈ Expr ::= x | null
| eγf | eγf = e
| eγm(e) | eγm#(e)
| new c(e) | eγsync e | fork e
| let x = e in e | if e e e | while e e

γ ∈ OptYield ::= . | . .

x, y ∈ Var

c, d ∈ ClassName

f ∈ FieldName = Normal ∪ Final ∪Volatile

m ∈ MethodName

a ∈ Effect

We introduce conditional effects to capture situations like this
where the effect of an operation depends on which locks are held
by the current thread. We use � to range over expressions that are
functional (F). Such expressions always reliably denote the same
lock. An effect a is then either a combined effect κ or an effect
conditional on whether a lock � is held:

a ::= κ | � ? a1 : a2

We extend the calculation of iterative closure, sequential com-
position, and join operations to conditional effects as follows:

(� ? a1 : a2)
∗ = � ? a∗1 : a∗2

(� ? a1 : a2); a = � ? (a1; a) : (a2; a)
a; (� ? a1 : a2) = � ? (a; a1) : (a; a2)

(� ? a1 : a2) � a = � ? (a1 � a) : (a2 � a)
a � (� ? a1 : a2) = � ? (a � a1) : (a � a2)

We also extend the effect ordering to conditional effects. To
decide a1 � a2, we use an auxiliary relation�h

n, where h is a set of
locks known to be held by the current thread, and n is a set of locks
known not to be held by the current thread. We define a1 � a2 to
be a1 �∅

∅ a2 and check a1 �h
n a2 recursively as follows:

κ1 � κ2

κ1 �h
n κ2

� �∈ n ⇒ a1 �h∪{l}
n a

� �∈ h ⇒ a2 �h
n∪{l} a

� ? a1 : a2 �h
n a

� �∈ n ⇒ κ �h∪{l}
n a1

� �∈ h ⇒ κ �h
n∪{l} a2

κ �h
n � ? a1 : a2

A similar notion of ordering was used for conditional atomicities
in our previous work on atomicity checkers [21].

5. Type and Effect System
We now formalize our type system for the idealized language
YIELDJAVA, a multithreaded subset of Java. This language does not
include some Java features, such as primitive types, arrays, inher-
itance, and interfaces. However, it is sufficient to explore the most
salient aspects of reasoning about thread interference. Section 6 de-
scribes how our implementation extends this idealized type system
to support other Java features.

5.1 Syntax
Figure 3 presents the YIELDJAVA syntax. A program P consists
of a sequence of class definitions defn . Each class definition defn

4 2011/9/14

if (b) then acq(M); else rel(N);

R L
N

Join correctly over-approximates
the effect of each branch

17

Full Effect tracks both commutativity and atomicity

µ µ∗

F F
Y M
M M
R R
L L
N −

; F Y M R L N
F F Y M R L N
Y Y Y Y Y L L
M M Y M R L N
R R R R R N N
L L Y L − L −
N N R N − N −

M

N

R L

F Y

4.2 Atomicity Effects
Each program expression also has an atomicity effect τ that sum-
marizes whether the expression performs a yield operation.

τ ::= A | C

Here, A (atomic) means the expression never yields, and C (compound)
means the expression may yield. Ordering (❁), iterative closure
(τ∗) and sequential composition (τ1; τ2) for atomicity effects are
defined by:

A ❁ C

τ∗
def
= τ

τ1; τ2
def
= τ1 � τ2

4.3 Combined Effects
A combined effect κ is a pair of a mover effect µ and an atomicity
effect τ :

κ ::= τµ

Note that not all combined effects are meaningful; in particular, AY
and CF are contradictory: an atomic piece of code may not contain
a yield, and code with yields cannot be considered functional.

We define the ordering relation and the join, iterative closure,
and sequential composition operations on combined effects in a
point-wise manner:

τ1µ1 � τ2µ2 iff τ1 � τ2 and µ1 � µ2

τ1µ1 � τ2µ2
def
= τ3µ3 where τ3 = τ1 � τ2 and µ3 = µ1 � µ2

τ1µ1; τ2µ2
def
= τ3µ3 where τ3 = τ1; τ2 and µ3 = µ1; µ2

(τµ)∗
def
= τ∗µ∗

The following diagram summarizes the resulting lattice of com-
bined effects:

CN

CR CL

AM

AN

AR AL

CY

CM

AF

4.4 Conditional Effects
Based on the previous discussion, the effect of acquiring a lock m
is AR, since a lock acquire is a right-mover that contains no yield
operations. However, if the lock m is already held by the current
thread, then the re-entrant lock acquire is actually a no-op and could
be more precisely characterized as a both-mover AM.

Figure 3: YIELDJAVA Syntax

P ∈ Program = defn

defn ∈ Definition ::= class c { field meth }
field ∈ Field ::= c f
meth ∈ Method ::= a c m(c x) { e }

e, � ∈ Expr ::= x | null
| eγf | eγf = e
| eγm(e) | eγm#(e)
| new c(e) | eγsync e | fork e
| let x = e in e | if e e e | while e e

γ ∈ OptYield ::= . | . .

x, y ∈ Var

c, d ∈ ClassName

f ∈ FieldName = Normal ∪ Final ∪Volatile

m ∈ MethodName

a ∈ Effect

We introduce conditional effects to capture situations like this
where the effect of an operation depends on which locks are held
by the current thread. We use � to range over expressions that are
functional (F). Such expressions always reliably denote the same
lock. An effect a is then either a combined effect κ or an effect
conditional on whether a lock � is held:

a ::= κ | � ? a1 : a2

We extend the calculation of iterative closure, sequential com-
position, and join operations to conditional effects as follows:

(� ? a1 : a2)
∗ = � ? a∗1 : a∗2

(� ? a1 : a2); a = � ? (a1; a) : (a2; a)
a; (� ? a1 : a2) = � ? (a; a1) : (a; a2)

(� ? a1 : a2) � a = � ? (a1 � a) : (a2 � a)
a � (� ? a1 : a2) = � ? (a � a1) : (a � a2)

We also extend the effect ordering to conditional effects. To
decide a1 � a2, we use an auxiliary relation�h

n, where h is a set of
locks known to be held by the current thread, and n is a set of locks
known not to be held by the current thread. We define a1 � a2 to
be a1 �∅

∅ a2 and check a1 �h
n a2 recursively as follows:

κ1 � κ2

κ1 �h
n κ2

� �∈ n ⇒ a1 �h∪{l}
n a

� �∈ h ⇒ a2 �h
n∪{l} a

� ? a1 : a2 �h
n a

� �∈ n ⇒ κ �h∪{l}
n a1

� �∈ h ⇒ κ �h
n∪{l} a2

κ �h
n � ? a1 : a2

A similar notion of ordering was used for conditional atomicities
in our previous work on atomicity checkers [21].

5. Type and Effect System
We now formalize our type system for the idealized language
YIELDJAVA, a multithreaded subset of Java. This language does not
include some Java features, such as primitive types, arrays, inher-
itance, and interfaces. However, it is sufficient to explore the most
salient aspects of reasoning about thread interference. Section 6 de-
scribes how our implementation extends this idealized type system
to support other Java features.

5.1 Syntax
Figure 3 presents the YIELDJAVA syntax. A program P consists
of a sequence of class definitions defn . Each class definition defn

4 2011/9/14

mover effect {F, Y, M, R, L, N}
 combined with
serializability effect {A, C}

18

Effect Language includes Conditional Effects

•Constants: AF, AM, AL, AR, AN, CY, CM, CR, CL, CN

• Conditionals encode effects under different locking conditions:
 lock ? effect : effect

class StringBuffer {

 int count;

 this ? both-mover : non-mover
 public synchronized int length() {
 return count;
 }

 ...
}

19

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ∧ Coop/preemptive

equivalence
Preemptive
correctness⇒

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

1. Static type system
 for verifying C-P equivalence

3. Experiments: Yield count

2. Example of
 coding with Yields

20

void update_x() {

 x = slow_f(x);

}

version 1

 Not C-P equivalent:
 No yield between accesses to xCopper / Silver

Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

x is volatile
concurrent calls to update_x

21

void update_x() {
 synchronized(m){
 x = slow_f(x);
 }
}

version 2

Not efficient!
high lock contention

= low performance

Copper / Silver

Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

22

void update_x() {
 int fx = slow_f(x);

 synchronized(m){
 x = fx;
 }
}

version 3

 Not C-P equivalent:
 No yield between accesses to xCopper / Silver

Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

23

void update_x() {
 int fx = slow_f(x);
 yield;
 synchronized(m){
 x = fx;
 }
}

version 4

Not correct:
Stale value at yieldCopper / Silver

Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

24

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);

 if (x == y) {
 x = fy;
 return;
 } else {
 y = x;
 }

 }
}

version 5

restructure:
test and retry pattern

Not C-P equivalent:
No yield between access to xCopper / Silver

Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

25

void update_x() {
 int y = x;
 for (;;) {
 yield;
 int fy = slow_f(y);
 synchronized(m){
 if (x == y) {
 x = fy;
 return;
 } else {
 y = x;
 }
 }
 }
}

version 6 Cooperative
correctness∧Coop/preemptive

equivalence
Preemptive
correctness⇒

Copper / Silver

26

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative
correctness ∧ Coop/preemptive

equivalence
Preemptive
correctness⇒

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield
 ...

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Cooperative scheduler
 seq. reasoning ok
 except where yields
 highlight interference

Cooperative Concurrency

1. Static type system
 for verifying C-P equivalence

2. Examples of
 coding with Yields

3. Experiments: Yield count

27

Interference Points: by the numbers

program LOC No Analysis Method Atomic Yields

j.u.z.Inflater 317 36 0 0
j.u.z.Deflater 381 49 0 0

j.l.StringBuffer 1276 210 9 1
j.l.String 2307 230 6 1

j.i.PrintWriter 534 73 130 26
j.u.Vector 1019 185 44 4

j.u.z.ZipFile 490 120 85 30
sparse 868 329 48 6

tsp 706 445 437 19
elevator 1447 454 241 25

raytracer-fixed 1915 565 105 26
sor-fixed 958 249 128 12

moldyn-fixed 1352 983 657 30
TOTAL 13570 3928 1890 180

All field accesses
and lock acquires

Fewer interference points:
less to reason about!

In non-atomic methods, count
field accesses, lock acquires,
and atomic methods calls

28

∧ Coop/preemptive
equivalence ⇒

≅

Code with sync & yields
 ...
 acquire(m)
 x++
 release(m)
 yield // interference
 ...

Summary of Cooperative Concurrency

Cooperative
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Cooperative scheduler
 seq. reasoning ok...
 ...except where yields
 highlight interference
x++ an increment op

Preemptive
correctness

...
yield

acquire(m)
x++
release(m)
yield

barrier(b)
yield

acquire(m)
x=0
release(m)
yield

Preemptive scheduler
 full performance
 no overhead

Yields mark all
thread interference

29

slang.soe.ucsc.edu/cooperability

30

