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What it is about

Study the semantics of imperative object-oriented programming, using
Idealized Algol as the foundational language.

Can we bridge the gap between the state-based paradigm
(Scott-Strachey approach) of semantics and the event-based
paradigm (Milner-Hoare approach)?
What is the right notion of relational parametricity (capturing data
abstraction) for programs manipulating store?
Can we push the full abstraction results beyond the second-order
active types of Idealized Algol?

Reynolds [1981] anticipates many of these ideas.
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Section 1

Information Hiding
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Information hiding

Imperative programs have information hiding pretty much
everywhere.
Object-oriented programming exploits this information hiding.

Information hiding arises much more fundamentally:
when local variables are declared (hidden outside their declaring
blocks),
when procedures are called (data in the calling context hidden from
the procedure)

As a result of information hiding, we get:
reasoning principles based on invariants (useful for proving
properties, safety, consistency, ingegrity),
reasoning principles based on simulation relations (useful for
program equivalence and data refinement).
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Information hiding leads to Invariants

Consider:
while x ≤ 100 do

x := x + 1

x ≥ 0 is invariant in x := x + 1.
Hence, x ≥ 0 is invariant in the entire whle-loop.

{P} C {P}

{P}while B do C {P}

This invariant principle has nothing to do with while-loops as such.
It also applies to all primitive control structures (repeat-until,
for-loops, if-then-else etc.)

{P} C1 {P} {P} C2 {P}

{P} if B then C1 else C2 {P}

Uday S. Reddy (Univ of Birmingham) Automata-theoretic model FOOL 6 / 43



Information hiding leads to Invariants - 2

The same principle also applies to user-defined higher-order
procedure constants (with no free identifiers) F : comm→ comm:

{P} C {P}

{P} F (C) {P}
We don’t even have to know what F does to establish the invariant
principle!
Why do these principles work?
Answer: Information hiding.
while is a constant (no free identifiers) of type:

while : exp[bool]× comm→ comm

The action of while has no direct access to any storage, other
than what is provided by its arguments.
Hence, any property left invariant by the arguments is also left
invariant by the while loop.
The storage of the arguments is hidden from the while
combinator.Uday S. Reddy (Univ of Birmingham) Automata-theoretic model FOOL 7 / 43
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Information hiding leads to binary simulation relations

Consider a relation:

x
[
R
]

y ⇐⇒ y = −x

Notice:
x ≤ 100

[
Rexp[bool]

]
y ≥ −100

(x := x + 1)
[
Rcomm

]
(y := y − 1)

Infer
while x ≤ 100 do x := x + 1

[Rcomm]
while y ≥ −100 do y := y − 1

Again, it is not necessary to know what while does, in order to
infer this fact.
Evey constant combinator will preserve the binary simulation
relation in the same way (including user-defined combinators).
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Information hiding in OOP

The same ideas also work for O-O classes.

class
local Var[int] x ;
init x := 0;
meth
{val() = x ,
inc() = (x := x + 1)}

The class has an invariant x ≥ 0, i.e., all the methods preserve it.
Hence, when the class is used in the context of any client, the
entire program will preserve the invariant.
Agian, information hiding is what is at play: The variable x is
hidden from the clients.
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Relational parametricity

Invariants and binary simulation relations are both instances of the
same concept: Relational parametricity.
Formulated by John Reynolds in 1983 for polymorphic lambda
calculus.
In the OOP context:

client : ∀X F (X )→ K (X )

The mathematical meaning of ∀ says that all possible relations
between potential representation types X will be preserved by
client.
[Dunphy and Reddy, 2004] give a general category-theoretic
axiomatization of this concept.
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Section 2

States and actions
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States and actions

In 1998, I discovered that there were two orthogonal dimensions
to modeling mutable storage:

states actions
State-invariants and state simulation relations may not be enough.
[Reynolds, 1981] used a similar modeling too. Simpler state-only
models later invented by Oles, Tennent and O’Hearn. Reynolds’s
model was essentially “forgotten”.
In the Formal Methods community, similar orthogonality was
discovered in terms of history Invariants. Originally from Ina Jo
[Scheid and Hostsberg, 1980-1992] and popularized by [Liskov
and Wing, 1994] and used in Spec#.
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History invariants

x := x + 1 satisfies a history invariant:

x ≥ old(x)

No matter how many tims the command x := x + 1 is run, the
initial state and the final state will satisfy this property.
It follows that

while x ≤ 100 do x := x + 1

also satisfies the history invariant.
Similar discussion as before applies: It does not matter what
while does for the preservation of history invariants. User-defined
combinators will also preserve it, if they are constant.
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Action invariants

A slightly more general concept than history invariants.

P(a) ⇐⇒ ∀n.a(n) ≥ n

P is a property of “actions,” i.e., state transformations.
Another example:

Q(a) ⇐⇒ ∃k . ∀n.a(n) = n + k

or
Q(a) ⇐⇒ ∀n.∃k .a(n) = n + k

Binary action relations are similar:

a
[
R
]

b ⇐⇒ ∀m,n. ∃k .a(n) = n + k ∧ b(m) = m − k

It is hard to see how to generalize traditional history invariants to
binary relations.
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Where do action invariants come from?

[O’Hearn and Tennent, 1993]: Relational parametricity and local
variables.

Showed that the information hiding aspects of local variables can
be modelled using relational parametricity (state-based relations).
[O’Hearn and Reynolds, 2000] used a variant using strict functions
(linear functions) to get rid of some snapback effects. Proved it fully
abstract for up to second-order function types.

[Reddy, 1993]: Global state considered unnecessary: Introduction
to object-based semantics.

Produced an event-based description of objects and classes, so
that information hiding is directly represented.
Only observable behavior of classes is captured in the semantics.
No data representations.
[O’Hearn and Reddy, 1995] proved it fully abstract for up to
second-order function types.

1993-98: I thought how to combine the best features of both the
models.
Algebraic automata theory was the inspiration.
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O’Hearn-Tennent vs. Event-based

Example in favour of the O’Hearn-Tennent model:

[[x := x + 1; x := x + 1]]
?
= [[x := x + 2]]

Example in favour of the Event-based model:

Jclass
local Var[int] x ;
init x := 0;
meth
{val() = x ,
inc() = (x := x + 1)}K

?
= Jclass

local Var[int] x ;
init x := 0;
meth
{val() = −x ,
inc() = (x := x − 1)}K
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O’Hearn-Tennent vs. Event-based

The O’Hearn-Tennent approach is good for computation, bad for
data.
The Event-based approach is good for data, bad for computation.
Is it possible to have the best of both worlds?
Can we have external behavior of agents described in terms of
events/traces, but the internal behavior as extensional state
transformation?
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Semiautomata

〈Q, Σ, α : Σ→ [Q ⇀ Q]〉

Q is a set of states.
Σ is a set of events.
α interprets events as state transformations.
The O’Hearn-Tennent model focuses on Q.
The Event-based model focuses on Σ.
Automata provide a framework to combine nthe two.
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Transformation monoids

Transformation monoids represent an “algebraic” version of
semiautomata:

〈Q, T ⊆ [Q ⇀ Q]〉

Q is a set of states.
T is a submonoid of state transformations.

[Q ⇀ Q] is the set of state transformations.
Sequential composition is “multiplication”.
The identity transformation is the “unit”.

The elements of T are thought of as “actions”.
More abstract variants of events.
Composable
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Section 3

Examples
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Example 1: Counters (state-based)

A state-based model of counter objects:

〈Q = Int , q0 = 0, {val : Q ⇀ Int = λn.n,
inc : Q ⇀ Q = λn.n + 1} 〉

An alternative model of counter objects:

〈Q′ = Int , q′0 = 0, {val′ : Q′ ⇀ Int = λn.−n,
inc′ : Q′ ⇀ Q′ = λn.n − 1} 〉

Their equivalence can be shown using a simulation relation:
Q

Q′

R
?

6
n
[
R
]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

The verification conditions are:

val
[
R ⇀ ∆Int

]
val′ inc

[
R ⇀ R

]
inc′
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Example 1: Counters (automata-based)

An automata-based model of counter objects:

〈Q = Int , T = Int+, q0 = 0, {val : Q ⇀ Int = λn.n,
inc : T = λn.n + 1} 〉

Int+ = down closure of {λn.n + k | k ≥ 0 }
The alternative model of counter objects:

〈Q′ = Int , T ′ = Int−, q′0 = 0, {val′ : Q′ ⇀ Int = λn.−n,
inc′ : T ′ = λn.n − 1} 〉

Int− = down closure of {λn.n − k | k ≥ 0 }
Their equivalence is shown using two relations:

Q

Q′
RQ ?
6

T

T ′
RT ?
6 n

[
RQ

]
n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

a
[
RT

]
a′ ⇐⇒ ∀n,n′.a(n)− n ' −(a(n′)− n′)

The verification conditions are:

val
[
RQ ⇀ ∆Int

]
val′ inc

[
RT

]
inc′
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Example 1: Counters (automata-based)

In addition to the state sets (Q), we also represent the allowed
state transformations (T ), with some natural coherence conditions.
The state change operations of the objects are of type T , not
Q ⇀ Q. So, one can only perform allowed state transformations.
The coherence conditions ensure that we cannot “cheat.” New
transformations can be made only by composing the allowed
transformations.
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Interlude: Idealized Algol

Reynolds’s Idealized Algol is a simply typed lambda calculus
(CBN) with base types for state manipulation:

comm exp[δ] val[δ]

where δ ranges over “data” types.
Sample constants:

0 : exp[int]
+ : exp[int]× exp[int]→ exp[int]
skip : comm
−;− : comm× comm→ comm
diverge : comm
if : exp[bool]× comm× comm→ comm
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Interlude: IA+

IA+ extends Idealized Algol with classes.
cls θ - the type of classes that have instances of type θ.
Primitive class (constant):

Var[δ] : cls {get : exp[δ], put : val[δ]→ comm}
Class definition (and its equivalent ML fragment):

class : θ
local C x ;
init A;
meth M

λ(). let x : θ = newC()
in A; M

Class instantiation:
new C o. P(o)

Additional constants:
:= : var[δ]× exp[δ]→ comm
deref : var[δ]→ exp[δ]
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Counter class in IA+

class : {val : exp[int], inc : comm}
local Var[int] x ;
init x := 0;
meth {val = deref x , inc = (x := (deref x) + 1)}
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“Awkward” Example [Pitts & Stark, 1998]

Example written in IA+ (Idealized Algol extended with classes):

C = class : {m : comm→ comm}
local Var[int] x ;
init x := 0;
meth {m = λc. x := 1; c; test(x = 1)}

test(b) , if b then skip else diverge

Does m terminate (assuming c terminates)?
Equivalently, do we believe that c does not change x?
Tommy Hacker says “yes”. x is a local variable of the class. So, c
can’t have access to it.
What say you?
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“Awkward” Example [Pitts & Stark, 1998]

C = class : {m : comm→ comm}
local Var[int] x ;
init x := 0;
meth {m = λc. x := 1; c; test(x = 1)}

It is not sound to say that c does not have “access” to x .
Consider the following client:

new C o. // create an instance of C and call it o
o.m (o.m skip)

When o.m is called, the argument passed involves another call to
o.m. So the argument c can change x .
The correct argument says that the the only change c can make
to x is to set it to 1. If it does that change, the test will still succeed.
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Consider the following client:

new C o. // create an instance of C and call it o
o.m (o.m skip)

When o.m is called, the argument passed involves another call to
o.m. So the argument c can change x .
The correct argument says that the the only change c can make
to x is to set it to 1. If it does that change, the test will still succeed.
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“Awkward” Example [Pitts & Stark, 1998]

C = class : {m : comm→ comm}
local Var[int] x ;
init x := 0;
meth {m = λc. x := 1; c; test(x = 1)}

We can formalize the correct argument by formulating a two part
invariant:

PQ(x) ⇐⇒ x = 0 ∨ x = 1
PT (a) ⇐⇒ a v (λn.n) ∨ a v (λn.1)

We must show that the body of m preserves the two-part invariant,
while assuming that the argument c preserves the two-part
invariant.
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“Very awkward” Example: Dreyer, Neis, Birkedal, 2010

C = class : {m : comm→ comm}
local Var[int] x ;
init x := 0;
meth {m = λc. x := 0; c; x := 1; c; test(x = 1)}

This is a twist on the “awkward” example, by introducing an
additional assignment x := 0 in m.
This seems to suggest that we should enlarge the action invariant
to include λn.0.
No need. The old invariant still works.

PQ(x) ⇐⇒ x = 0 ∨ x = 1
PT (a) ⇐⇒ a v (λn.n) ∨ a v (λn.1)

The first call to c will either leave x unchanged or set it to 1. But,
we don’t care either way. m will immediately overwrite x with 1.
The second call to c is the same as before.
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“Very awkward” Example: Dreyer, Neis, Birkedal, 2010

C = class : {m : comm→ comm}
local Var[int] x ;
init x := 0;
meth {m = λc. x := 0; c; x := 1; c; test(x = 1)}

Dreyer et al. prove that m terminates (assuming c terminates), by
using two separate kinds of transitions:

Private transitions, such as x := 0, which represent internal state
transitions inside methods.
Public transitions, such as x := 1, which are visible to the callers.

We don’t find a need for any special treatment of “private
transitions.” They are handled automatically by the normal
parametricity reasoning.
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Section 4

Semantic Overview
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Possible world semantics

The semantics of Idealized Algol is given as a possible world
semantics.
W - a category of worlds (with relations), formally a parametricity
graph.

The objects of W represent store shapes.
Morphisms f : X →W in W represent the idea that X is a possible
future world of W , typically a larger store than W .

Types of the programming language θ are interpreted as functors
(with some technicalities):

[[θ]] : Wop → CPO

Terms of the programming language are interpreted as
parametric transformations:

x1 : θ1, . . . , xn : θn ` M : θ′ [[M]] : [[~θ]]→ [[θ′]]
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Possible world semantics - contd

Denote [[θ]] by F .
For each world W , F (W ) is the set of meanings of type θ for store
W .
Morphisms, relations and squares are mapped as well:

X

W

f
?

7→

F (X )

F (W )

F (f )
6

X

X ′

R
?

6
7→

F (X )

F (X ′)

F (R)
?

6

X
f
- W

X ′

S
?

6

f ′
- W ′

R
?

6
7→

F (X ) �
F (f )

F (W )

F (X ′)

F (S)
?

6

�
F (f ′)

F (W ′)

F (R)
?

6
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Possible world semantics - contd

The meaning of a term is a uniform family of functions, preserving
all possible relations between store shapes:

X

X ′

R
?

6

[[~θ]](X )
[[M]]X- [[θ′]](X )

[[~θ]](X ′)

[[~θ]](R)
?

6

[[M]]X ′
- [[θ′]](X ′)

[[θ′]](R)

?

6

The uniformity property says that the meanings of terms act the
same way for all store shapes.
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Possible world semantics - contd

The meanings of types have this form:

[[comm]](W ) = . . .

[[exp[δ]]](W ) = . . .

[[val[δ]]](W ) = [[δ]]

[[θ1 × θ2]](W ) = [[θ1]](W )× [[θ2]](W )

[[θ → θ′]](W ) = ∀h:X→W [[θ]](X )→ [[θ′]](X )

[[cls θ]](W ) = ∃Z (QZ )⊥ × [[θ]](Z )

Note the correspondence with the counter classes seen earlier:

〈Q = Int , T = Int+, q0 = 0, {val : Q ⇀ Int = λn.n,
inc : T = λn.n + 1} 〉

Int+ = down closure of {λn.n + k | k ≥ 0 }

We use automata-theoretic ideas to define the possible worlds W
and the interpretation of the base types comm and exp.
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Semantics of types

The meanings of types have this form:

[[comm]](W ) = TW

[[exp[δ]]](W ) = [QW ⇀ [[δ]]]

[[val[δ]]](W ) = [[δ]]

[[θ1 × θ2]](W ) = [[θ1]](W )→ [[θ2]](W )

[[θ → θ′]](W ) = ∀h:X→W [[θ]](X )→ [[θ′]](X )

[[cls θ]](W ) = ∃Z (QZ )⊥ × [[θ]](Z )

Note that the meanings of commands are the allowed
transformations of the store (an automaton).
The corresponding relational actions are as expected.
[[comm]](R) = RT . [[exp[δ]]](R) = [RQ ⇀ ∆[[δ]]].
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Semantics of primitives

condE : EXPBool × EXPδ × EXPδ → EXPδ
condE

W (e,e1,e2) = λs. (λv . v → e1(s); e2(s))∗(e(s))

condC : EXPBool × COMM × COMM → COMM

condC
W (e,a,b) = readW λs. (λv . v → a; b)∗(e(s))

deref : VARδ → EXPδ
derefW (e,a) = e
assign : VARδ × EXPδ → COMM

assignW ((d ,a),e) = readW λs.a∗(e(s))

Var[δ] : 1→ CLS VARδ
Var[δ]W (∗) = 〈|V , initδ,mkvar|〉

where V = (δ,T (δ)) mkvar = (λn.n, λk . λn. k)

newvar : (VARδ ⇒ COMM)→ COMM

newvarW (p) = (λs. (s, initδ)) · p[π1](mkvar↑W?V
V ) · (λ(s,n). s)
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Results

Theorem: The semantics is parametric.
This implies the soundness of the reasoning principles with
two-part simulation relations and two-part invariants.
Several representation results without divergence, e.g.,

[[comm→ comm]](1) ∼= Nat

Some representation results with divergence, especially for
passive types:

[[comm→ exp[δ]]](W ) ∼= [[exp[δ]]](W )
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Section 5

Conclusion
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Summary

We made a small beginning to bridge the gap between
state-based (Scott-Strachey) and event-based (Milner-Hoare)
paradigms in semantics.
Automata seem to provide the right structure to capture the
intuitions about “agents” and “objects” that have internal structure
and external behaviour.
This seems to be quite worthwhile exercise as it gives simple
reasoning principles to prove equivalences that were heretofore
difficult to prove using denotational methods.
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Further work - Theory

Partial functions vs. strict functions.
Weaken the Reynolds diagonal.
Treat reading as a separate action.
Call by value.
Concurrency.
Higher-order state.
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Further work - Applications

Heap storage.
Programming logics (Hoare logic, specification logic, separation
logic).
Rely-guarantee and deny-guarantee reasoning
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