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Summary

• Soundness proof for permission type system

1. Based on a Java-like kernel language;

2. Machine-checked using Twelf.

• Soundness proof for a non-null type system

1. Reducing to fractional permissions;

2. Reusing the existing proof for the first.
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Fractional Permissions

• A system for managing access to mutable 
states;

• Each field is associated with a permission, 
represents its accessibility to the object;

• Nesting is used to model object invariants 
and ownership.
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Basic Permission

• Basic permission :

• Represents full access (read and write) to 
the field    of object    ;

• Gives additional information that points 
to another object    ;

• Linear: cannot be duplicated.
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Formula

• Represents facts that remain true;

• Non-linear;

• can be duplicated and discarded.

• Most noticeable one:
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Other Permissions

Sunday, October 23, 2011



Other Permissions
class 

predicate
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Other Permissions

existential
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Other Permissions

conditional
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Other Permissions

empty 
permission 
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Other Permissions

nesting
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Other Permissions
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Other Permissions
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Other Permissions
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Transformation
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Transformation
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Transformation

carving out

temporarily 
unusable
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Transformation

carving out

temporarily 
unusable

Sunday, October 23, 2011



Transformation

carving out

temporarily 
unusable
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Transformation

carving out

linear modus ponens
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Kernel Language

concurrency is omitted here
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Permission Type

Procedure type

Program type

Type Judgment
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P-Write

value updated

writable
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Consistency

• Between Fractional Permissions and 
Memory

1. Evaluation depends on memory;

2. Type checking depends on permission;

3. Fractional heaps connect the two.
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Consistency
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How to Prove?

• Standard approach:

1. Define syntax and semantics;

2. Define type system;

3. Define consistency;

4. Prove progress/preservation.

• All checked in Twelf

Sunday, October 23, 2011



Piggy-backing Proof

• Prove soundness of one type system by 
reducing to another (more powerful) one;

• Reuse machine-checked proof.

• No dynamic semantics;

• No progress/preservation needed.
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Non-null Type

• Same kernel language;

• Reference type is augmented to be either 
not-null or possibly-null;

• No restriction on reference access

• i.e., every reference is owned by “world”

• Constructor is restricted to avoid leakage 
of this reference.
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Not-Null 
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Not-Null 

class map, method 
map and context
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Not-Null 

class map, method 
map and context
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Not-Null 

class map, method 
map and context

possibly null
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Not-Null 

class map, method 
map and context

not null possibly null
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Converting Class
For a class   with with fields                 :

where

not null
possibly null

class 
predicate

Owned by 
“world”
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Converting Method

converted to

permission 
to write 
world
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Lemma

For every   in the kernel language, if it has 
type   in non-null system under   ,     , and    , 
then after converting these to    and    ,    is 
also well-typed under permission system. In 
addition, the output permission is            , 
where      is the permission converted 
from   .
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Example
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Example
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Example
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Example
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P-Write

assuming     is 
not null and

is annotated as not null 
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P-Write

assuming     is 
not null and

is annotated as not null 
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P-Write

assuming     is 
not null and

is annotated as not null 
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P-Write
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P-Write
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P-Write 
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P-Write
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P-Write

duplicate
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P-Write

duplicate
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P-Write

discarded
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P-Write

pack
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P-Write
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P-Write

linear modus 
ponens
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P-Write
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P-Write
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P-Write
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P-Write
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P-Write
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P-Write
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P-Write

Sunday, October 23, 2011



Soundness 

For every program   in kernel language, if 
can be type checked under the non-null 
system, with consistent environments    
and    , then with converted program 
type    ,    can also be type checked under 
the permission system.
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How to Prove?

• Piggy-back approach:

1. Define type system;

2. Convert classes and methods;

3. Prove the lemma and theorem.

• All checked in Twelf.
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Conclusion

1. Fractional permissions with nesting is 
sound for a Java-like kernel language;

2. Fractional permissions can serve as a basis 
to prove soundness of other type systems;

3. Machine-checked proof has its benefits.
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Thanks!
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