
Proving the Correctness of Fractional
Permissions for a Java-like Kernel

Language

John Boyland, Chao Sun
University of Wisconsin - Milwaukee

FOOL 2011

Sunday, October 23, 2011

Summary

• Soundness proof for permission type system

1. Based on a Java-like kernel language;

2. Machine-checked using Twelf.

• Soundness proof for a non-null type system

1. Reducing to fractional permissions;

2. Reusing the existing proof for the first.

Sunday, October 23, 2011

Fractional Permissions

• A system for managing access to mutable
states;

• Each field is associated with a permission,
represents its accessibility to the object;

• Nesting is used to model object invariants
and ownership.

Sunday, October 23, 2011

Basic Permission

• Basic permission :

• Represents full access (read and write) to
the field of object ;

• Gives additional information that points
to another object ;

• Linear: cannot be duplicated.

Sunday, October 23, 2011

Formula

• Represents facts that remain true;

• Non-linear;

• can be duplicated and discarded.

• Most noticeable one:

Sunday, October 23, 2011

Other Permissions

Sunday, October 23, 2011

Other Permissions
class

predicate

Sunday, October 23, 2011

Other Permissions

existential

Sunday, October 23, 2011

Other Permissions

conditional

Sunday, October 23, 2011

Other Permissions

empty
permission

Sunday, October 23, 2011

Other Permissions

nesting

Sunday, October 23, 2011

Other Permissions

Sunday, October 23, 2011

Other Permissions

Sunday, October 23, 2011

Other Permissions

Sunday, October 23, 2011

Transformation

Sunday, October 23, 2011

Transformation

Sunday, October 23, 2011

Transformation

carving out

temporarily
unusable

Sunday, October 23, 2011

Transformation

carving out

temporarily
unusable

Sunday, October 23, 2011

Transformation

carving out

temporarily
unusable

Sunday, October 23, 2011

Transformation

carving out

linear modus ponens

Sunday, October 23, 2011

Kernel Language

concurrency is omitted here
Sunday, October 23, 2011

Permission Type

Procedure type

Program type

Type Judgment

Sunday, October 23, 2011

P-Write

value updated

writable

Sunday, October 23, 2011

Consistency

• Between Fractional Permissions and
Memory

1. Evaluation depends on memory;

2. Type checking depends on permission;

3. Fractional heaps connect the two.

Sunday, October 23, 2011

Consistency

Sunday, October 23, 2011

How to Prove?

• Standard approach:

1. Define syntax and semantics;

2. Define type system;

3. Define consistency;

4. Prove progress/preservation.

• All checked in Twelf

Sunday, October 23, 2011

Piggy-backing Proof

• Prove soundness of one type system by
reducing to another (more powerful) one;

• Reuse machine-checked proof.

• No dynamic semantics;

• No progress/preservation needed.

Sunday, October 23, 2011

Non-null Type

• Same kernel language;

• Reference type is augmented to be either
not-null or possibly-null;

• No restriction on reference access

• i.e., every reference is owned by “world”

• Constructor is restricted to avoid leakage
of this reference.

Sunday, October 23, 2011

Not-Null

Sunday, October 23, 2011

Not-Null

class map, method
map and context

Sunday, October 23, 2011

Not-Null

class map, method
map and context

Sunday, October 23, 2011

Not-Null

class map, method
map and context

possibly null

Sunday, October 23, 2011

Not-Null

class map, method
map and context

not null possibly null

Sunday, October 23, 2011

Converting Class
For a class with with fields :

where

not null
possibly null

class
predicate

Owned by
“world”

Sunday, October 23, 2011

Converting Method

converted to

permission
to write
world

Sunday, October 23, 2011

Lemma

For every in the kernel language, if it has
type in non-null system under , , and ,
then after converting these to and , is
also well-typed under permission system. In
addition, the output permission is ,
where is the permission converted
from .

Sunday, October 23, 2011

Example

Sunday, October 23, 2011

Example

Sunday, October 23, 2011

Example

Sunday, October 23, 2011

Example

Sunday, October 23, 2011

P-Write

assuming is
not null and

is annotated as not null

Sunday, October 23, 2011

P-Write

assuming is
not null and

is annotated as not null

Sunday, October 23, 2011

P-Write

assuming is
not null and

is annotated as not null

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

duplicate

Sunday, October 23, 2011

P-Write

duplicate

Sunday, October 23, 2011

P-Write

discarded

Sunday, October 23, 2011

P-Write

pack

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

linear modus
ponens

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

P-Write

Sunday, October 23, 2011

Soundness

For every program in kernel language, if
can be type checked under the non-null
system, with consistent environments
and , then with converted program
type , can also be type checked under
the permission system.

Sunday, October 23, 2011

How to Prove?

• Piggy-back approach:

1. Define type system;

2. Convert classes and methods;

3. Prove the lemma and theorem.

• All checked in Twelf.

Sunday, October 23, 2011

Conclusion

1. Fractional permissions with nesting is
sound for a Java-like kernel language;

2. Fractional permissions can serve as a basis
to prove soundness of other type systems;

3. Machine-checked proof has its benefits.

Sunday, October 23, 2011

Thanks!

Sunday, October 23, 2011

